交通银行-基于Flink+Hudi的实时数据湖建设

目前商业银行数据仓库主要采用基于MPP(Massively Parallel Processing)架构的离线数据存储计算方式,离线数仓的数据源主要以文件形式提供,由统一批量采集传输原始数据至客户端服务器,对数据进行清洗、转换、加载至MPP数据库贴源层,然后再经由明细层、汇总层逐层加工,形成轻、高度汇总模型,最终以批处理方式将数据下发到各应用系统使用。该实现方式的主要问题在于数据统计时延长,统计报表只能展示前一天甚至两天前。随着大数据存储技术和计算技术的快速发展,低延时、高并发的业务需求越来越多,上述高时延、低并发的离线数仓架构已经不能满足业务需求。基于此,本文提出一种基于Flink+Hudi的实时数据湖架构,实现秒级延迟和日均十亿级吞吐量的处理能力,提供商业银行数字化营销、客户画像、实时风险决策等各类实时服务能力和数据,有效支撑商业银行内部业务运营决策。

图片

图片

实时数据湖关键技术分析

本文以提升商业银行分析决策的实时性为目的,构建从底层数据源到上层应用服务的全流程数据加工框架。在数据处理的全流程阶段

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行金融科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值