振弦传感器计算公式推导及测量原理

本文详细介绍了振弦式传感器的工作原理,利用泰勒公式推导了振动频率与钢弦受力的关系。在弹性范围内,传感器的测量基于物理量变化引起的钢弦应变,通过线性关系计算被测物理量。通过实验室标定,可以得到传感器的转换系数,进而用于实际测量。传感器监测的是物理量的变化,通过比较初始频率(如出厂频率)和当前频率,计算出被测物理量的变化值。频模的概念也被提及,简化了测量表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

弦的振动频率公式是:(泰勒公式推导)

当振弦传感器制作完成以后,钢弦密度ρ、钢弦长度L就会是不再发生改变的常数项,

,所以上式可以简化为

 

f2=K

对于弹性材料,其所受的应力σ与应变ε是线性关系,系数取决于材料的弹性模量E,同样的,在钢弦弹性范围内,其弹性模量是不会发生变化的,所以这个应力与应变之间的系数也会是一个常数,用K"来表示,所以上面的式子可以写为


 

振弦式传感器的测量原理为:

物理量改变传感器受力,传感器受力引起钢弦变形(同应力变化),所以,只要保证传感器的结构变化与内部钢弦的变形是线性关系,就可以实现“所测物理量与钢弦变形量(应变)的线性关系”,设:传感器受力(要测量的物理量)与钢弦应变之间的变形系数为K''',则K'''ε即是要测量的物理量的值,K'K''均为常数,则上式可写为

如果令,则上式可变换为

 

在实验室内,通过对传感器施加一个已知的物理值(比如:对一个振弦式压力传感器施加一个100kN的影响力),通过传感器读数设备可以读取到此时对应的频率f,所以这个K值就可以计算出来。

传感器对被测物体进行监测,实际上是在监测相对变化,假设传感器未受外力影响时或者刚刚安装完成时的频率为f0,被物理变化导致传感器被动变化后频率改变为f1,则被测物理量就分别为:

所以,被测物理量的改变量即为:

被测物理值1-被测物理值0=Kf12-Kf02

如果是压力传感器或者液位传感器(渗压计),传感器不受力时认为是0值,f0即是所谓的“出厂频率”,则计算公式可简化为

又因“频率的平方”会被称为“频模”,所以有时也会写成下面的形式

 

<think>好的,我需要帮助用户查找MQ-3酒精传感器计算公式、数据处理方法。首先,我要回忆MQ系列传感器的通用工作原理。MQ传感器通常基于气敏材料的电阻变化,其电阻与气体浓度相关。根据之前的知识,MQ-2的说明提到输出模拟电压与浓度成正比,但具体公式可能涉及对数关系,因为半导体传感器的响应通常是非线性的。 接下来,我需要确认MQ-3的具体参数。可能用户提供的引用是关于MQ-2的,但用户现在问的是MQ-3,所以需要区分两者的异同。不过,MQ系列的数据处理可能有相似之处。通常,传感器的电阻Rs与气体浓度C的关系可以用公式:Rs/R0 = a*C^b,其中R0是清洁空气中的电阻,a和b是传感器特性参数,需要查数据手册。 然后,用户可能需要将传感器的模拟电压转换为浓度。由于MQ-3的输出电压Vout与Rs有关,通常电路设计中使用分压电路,所以Vout = (RL/(Rs + RL)) * VCC,其中RL是负载电阻,VCC是电源电压。结合之前的Rs公式,可以推导出浓度C的表达式。 此外,数据处理时可能需要校准步骤,包括在清洁空气中测量R0,以及在已知浓度气体中获取a和b的值。可能还需要温度湿度补偿,因为传感器受环境因素影响,这点在用户提供的引用中也提到结果受温湿度影响。 现在,我需要确保提供的公式正确,并建议用户查阅MQ-3的数据手册以获取准确的参数。同时,提醒数据处理中的注意事项,比如校准和环境控制。 最后,生成相关问题,可能涉及其他MQ传感器的比较、具体校准步骤、温湿度补偿方法等。</think>### MQ-3酒精传感器计算公式与数据处理方法 MQ-3酒精传感器的核心原理是通过气敏材料电阻值变化检测酒精浓度。其输出信号与浓度的关系通常遵循**对数线性模型**,公式如下: $$ R_s / R_0 = a \cdot C^b $$ 其中: - $R_s$:传感器在酒精环境中的电阻值 - $R_0$:传感器在清洁空气中的电阻值(需定期校准) - $C$:酒精浓度(单位:ppm或mg/L) - $a,b$:传感器特性参数(需查数据手册) #### 数据处理步骤 1. **电压信号转换** 传感器输出电压$V_{out}$与电阻的关系由分压电路决定: $$ V_{out} = \frac{R_L}{R_s + R_L} \cdot V_{CC} $$ 通过测量$V_{out}$可反推$R_s$: $$ R_s = R_L \cdot \left( \frac{V_{CC}}{V_{out}} - 1 \right) $$ 2. **浓度计算** 将$R_s/R_0$代入初始公式推导出浓度表达式: $$ C = \left( \frac{R_s/R_0}{a} \right)^{1/b} $$ 3. **温度补偿** 建议使用以下修正公式(需实验验证)[^1]: $$ C_{corrected} = C \cdot e^{k(T - T_0)} $$ $T$为当前温度,$T_0$为参考温度,$k$为补偿系数 #### 注意事项 1. 必须通过已知浓度酒精进行校准获取$a,b$参数 2. 传感器预热时间需≥24小时以提高稳定性 3. 建议使用移动平均滤波处理原始数据 ```python # 示例代码:MQ-3酒精浓度计算 def calculate_concentration(V_out, R0=10, a=0.8, b=-0.65, Vcc=5.0, RL=10): Rs = RL * (Vcc / V_out - 1) ratio = Rs / R0 return (ratio / a) ** (1/b) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值