
三维药物分子设计
文章平均质量分 93
一个人看论文的碎碎念,研究方向如名为三维药物分子设计
嘿嘿我跑了
研究方向为三维药物分子设计,我将持续更新博客~
展开
-
论文简读《Efficient molecular sampling based on 3d protein pockets》
近年来,深度生成模型在设计新型药物分子方面取得了巨大成功。一系列新的研究工作展示了考虑蛋白质口袋结构在内的因素,有助于提高体外药物设计的特异性和成功率。这种设定在采样新的化合物时提出了基本的计算挑战,这些化合物需要满足由口袋施加的多个几何约束。先前的采样算法要么在图空间中进行采样,要么仅考虑原子的三维坐标,而忽略了其他详细的化学结构,如键类型和功能基团。为了解决这一挑战,我们开发了Pocket2Mol,这是一个由两个模块组成的 E(3)-等变生成网络。原创 2024-04-08 21:35:18 · 2026 阅读 · 0 评论 -
论文简读《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》
一个端到端的框架,用于在蛋白靶点条件下生成分子,该框架明确考虑了蛋白质和分子在三维空间中的物理相互作用。*就我们所知,这是针对靶向药物设计的第一个概率扩散公式,其中训练和采样过程以非自回归和SE(3)-等变的方式对齐,这得益于移位中心操作和等变GNN。原创 2024-04-06 22:58:09 · 1163 阅读 · 1 评论 -
论文简读《A 3d generative model for structure-based drug design》
我们的目标是生成一组原子,能够形成符合特定结合位点的有效药物分子。为此,我们首先在第3.1节介绍一个3D生成模型,该模型预测了结合位点的三维空间中原子出现的概率。其次,在第3.2节中,我们提出了一个自回归采样算法,用于从模型中生成有效且多模态的分子。最后,在第3.3节中,我们推导了训练目标,通过该目标模型学习预测应该放置原子的位置以及应该放置何种类型的原子。原创 2024-04-06 17:52:42 · 1604 阅读 · 1 评论 -
论文简读《Generating 3D molecules conditional on receptor binding sites with deep generative models》
初步工作是基于表示为原子密度网格或库仑矩阵的受体结合位点信息来生成SMILES字符串,其他人则使用强化学习来引导3D配体的采样朝向对靶蛋白具有高亲和力,或者将分子图表的生成条件设置为3D药效团的密度网格。为了解决这个问题,我们做出了以下贡献:(1)首次演示了具有受体条件的深度生成模型生成3D分子结构的能力。(2)评估了将生成模型条件设置为突变受体对生成分子的影响。(3)通过采样和插值探索了生成模型学习的潜在空间。原创 2024-04-06 17:17:49 · 1725 阅读 · 1 评论