[卡内基梅隆大学]10-725: Optimization Fall 2012 -Lecture 17: October 23 构造对偶函数

问题1:求解 l1, 范数子问题。

即求解在文献2中,有公式(10):

minw12||wv||22+λ^||w||1
因为二次函数的共轭是仍然是二次函数, l 范数的共轭是 l1 障碍函数。因此得到公式(10)的对偶形式为如下公式(11):
mina12||av||22s.t.||a||1λ^

其中 a=vw .
公式(10)到公式(11)是怎么推导的呢?(由于 α 打不出矢量的形式(粗体),我们使用 a 代替)
疑问:一说到函数的对偶,一般就是拉格朗日对偶,即有约束的函数才有对偶形式,公式(10)是无约束的情况,如何求解其对偶函数呢?
突破口:将无约束的问题转换为有约束的问题。从题中可以看到,公式(11)多了一个等式条件:a=vw.

解:
参照文献1中17.4.2 Dual construction via conjugates of pairs of functions
我们将公式(10),引入约束 a=vw ,则 w=va ,将其带入公式(10)中的第二个公式得到;

minwa12||wv||22+λ^||va||s.t.w=va

写成拉格朗日的形式为:
g(u)=minwa12||wv||22+λ^||va||+uT(vwa)

进行变量的分解:
g(u)=minw12||wv||22uTw+minaλ^||va||uT(av)

转换为求最大值:
g(u)=maxwuTw12||wv||22maxauT(av)λ^||va||

进行变量的替换,化简第二项:
g(u)=maxwuTw12||wv||22maxauT(va)λ^||va||g(u)=maxwuTw12||wv||22maxwuT(w)λ^||w||

因此,由共轭函数的定义,上述可以表示成共轭形式,其中令 f1(w)=12||wv||22 , f2(a)=λ^||a||
maxug(u)=maxuf1(u)f2(u)

即为:
argminug(u)=argminuf1(u)+f2(u)

由2范数的平方的共轭函数是其本身,范数的共轭函数是其对偶范数单位球的示性函数[参见凸优化102页,例3.26]。并且由范数的性质:

||x||=||x||

我们最终得到公式(11)。
还有一点是,函数 f(x)=||x|| 的共轭函数是:
f(y)={0||y||1

那么函数 f(x)=λ||x|| 的共轭函数是:
f(y)={0||y||λ

其可以通过参考: http://blog.csdn.net/raby_gyl/article/details/53178467
中的一维情况来理解(此时 y,λ 均相当于线的斜率)。

问题2:求解 l1,2 范数子问题

即求解问题:

minw12||wv||22+λ^||w||22

可能可行的求解方法:上面是关于 w 的二次函数,如果我们直接对 f(w) 关于 w 求偏导,然后令其等于0.
f(w)w=wv+λ^w||w||2=0

显然,通过上的公式我们很难化简出来 w .
可行的方法: 和上面类似,我们引入一个等式约束,然后利用求解带有等式约束的拉格朗日对偶函数。
等式约束:
a=vw

同上面类似,范数平方的共轭是其本身,而范数的共轭是对偶范数在单位球上的示性函数,并且将最大化问题转化为共轭的问题,因此转化为下面的优化问题:
mina12||av||22s.t.||a||2λ^

其中 a=vw
很显然,如果 ||v||2λ^ ,则 a=v ,则 w=vv=0
在观察一下公式问题2,假定存在一个 w 使得问题2最小化,并且 w v 不共向,即不满足:
wkv
,则必然存在另外一个向量 w0 ,其大小和 w 相同,方向和 v 相同,即满足:
w0=v||v||2||w||
.
那么必有 f(w0)<f(w) ,与已知相矛盾,所以可得最优解 w v 同方向,即满足:
w=kv

那么 a 也与 v 同向,即满足:
a=kv

这里写图片描述
如上图,向量b=c-a,令向量c代表v,向量a代表w,那么我们总能找到一个a’,其大小与a相同,方向与c同向,可知道|c-a’|<|c-a|=|b|.
现在我们已知的条件有:
minw12||av||22s.t.||a||2λ^a=kv

我们可以通过画图的方式简单的求解:
这里写图片描述
v 或者说向量 v 到圆内最近投影肯定在圆的边界上,并且投影后的矢量与 v 同向,即图中红色的点所示,其大小为圆的半径,其方向为 v 的方向,因此有:
a==λ^v||v||2

w=vλ^v||v|| .
因此最后的最优解为:
w=(1λ^||v||2)v0||v||2>λ^||v||2λ^

参考文献:
1. 10-725: Optimization Fall 2012
Lecture 17: October 23
Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Yifei Ma, Mahdi Pakdaman Naeini
2. Accelerated Gradient Method for Multi-Task Sparse Learning Problem

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值