凸优化第五章对偶 5.1Lagrange对偶函数

本文深入探讨了Lagrange对偶函数在凸优化中的应用,包括其定义、最优值的下界以及在线性等式最小范数、标准线性规划和双向划分问题中的实例解析。同时,阐述了Lagrange对偶函数与共轭函数的关系,展示了如何利用对偶函数求解优化问题。
摘要由CSDN通过智能技术生成

5.1Lagrange对偶函数

  1. Lagrange
  2. Lagrange对偶函数
  3. 最优值的下界
  4. 例子
  5. Lagrange对偶函数和共轭函数

Lagrange

标准形式的优化问题:

minimize \, \, f_0(x)\\ subject \, \, to \, \, \begin{matrix} f_i(x)\leq 0 &i=1,2\cdots m \\ h_i(x)=0 & i=1,2\cdots p \end{matrix}

其中x\in R^n,问题的定义域D=\bigcap _{i=0}^m dom(f_i)\cap \bigcap _{i=1}^pdom(h_i),注意这里不要求该优化问题是凸优化问题。

定义问题的Lagrange函数L:R^n\times R^m\times R^p\rightarrow R为:

L(x,\lambda ,v)=f_0(x)+\sum _{i=1}^{m}\lambda _if_i(x)+\sum _{i=1}^{p}v_ih_i(x)

定义域:L=D\times R^m\times R^p\lambda _i为第i个不等式约束f_i(x)\leq 0对应的Lagrange乘子,v _i为第i个等式约束h_i(x)= 0对应的Lagrange乘子。向量\lambda ,v为对偶变量或者问题的Lagrange乘子向量。

Lagrange对偶函数

定义Lagrange对偶函数g:R^m \times R^p\rightarrow R为Lagrange函数关于x取得的最小值:即对\lambda \in R^m,v \in R^p

g(\lambda ,v)=\underset{x \in D}{inf}L(x,\lambda,v)=\underset{x \in D}{inf}\left ( f_0(x)+\sum _{i=1}^m\lambda _if_i(x)+\sum _{i=1}^pv_ih_i(x) \right )

如果Lagrange函数关于x无下界,则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值