9、python进阶-函数式编程之一
1、函数式编程概念
函数:function
函数式:functional 一种编程范式
函数 不等于 函数式 计算 不等于 计算机
1.1、函数式编程特点:
- 把计算视为函数而非指令
- 纯函数式编程:不需要变量,无副作用,测试简单
- 支持高阶函数,代码简洁
1.2 python函数式编程特点:
- 不是纯函数式编程:允许有变量
- 支持告诫函数:函数也可以作为变量传入
- 支持闭包:有了闭包,就能返回函数
- 有限度地支持匿名函数
2、高阶函数
2.1 概念:能接收函数做参数的函数就是高阶函数
变量可以指向函数
f=abs
f(20)
abs=len
函数名其实是指向函数的一个变量
高阶函数:能接收函数做参数的函数就是高阶函数
- 变量名可以指向函数
- 函数的参数可以接收变量
- 一个函数可以接收另外一个函数作为参数
- 能接收函数做参数的函数就是高阶函数
def add(x,y,f):
return f(x) + f(y)
print add(-1,2,abs)
3、一些高阶函数
3.1 map函数
map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。不改变原来list,返回新的list
def f(x):
return x*x
print map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
#输出 [1, 4, 9, 10, 25, 36, 49, 64, 81]
例子:首字母变大写,其余字母小写
def format_name(s):
return s[:1].upper() + s[1:].lower()
#或者用 Python的capitalize()将字符串的第一个字母变成大写,其他字母变小写
print map(format_name, ['adam', 'LISA', 'barT'])
3.2 reduce函数
reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。
例如,编写一个f函数,接收x和y,返回x和y的和:
def f(x, y):
return x + y
调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算:
- 先计算头两个元素:f(1, 3),结果为4;
- 再把结果和第3个元素计算:f(4, 5),结果为9;
- 再把结果和第4个元素计算:f(9, 7),结果为16;
- 再把结果和第5个元素计算:f(16, 9),结果为25;
- 由于没有更多的元素了,计算结束,返回结果25。
ps: 上述计算实际上是对 list的所有元素求和。虽然Python内置了求和函数sum(),但是,利用reduce()求和也很简单。
**reduce()还可以接收第3个可选参数,作为计算的初始值。**如果把初始值设为100,计算:
reduce(f, [1, 3, 5, 7, 9], 100)
结果将变为125,因为第一轮计算是:
计算初始值和第一个元素:f(100, 1),结果为101。
例子:求乘积的函数
def prod(x, y):
return x*y
print reduce(prod, [2, 4, 5, 7, 12])
3.3 filter函数
filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。
例子1:要从一个list [1, 4, 6, 7, 9, 12, 17]中删除偶数,保留奇数
首先,要编写一个判断奇数的函数:
def is_odd(x):
return x % 2 == 1
然后,利用filter()过滤掉偶数:
filter(is_odd, [1, 4, 6, 7, 9, 12, 17])
结果:[1, 7, 9, 17]
例子2 删除 None 或者空字符串:
def is_not_empty(s):
return s and len(s.strip()) > 0
filter(is_not_empty, [‘test’, None, ‘’, ‘str’, ’ ', ‘END’])
结果:[‘test’, ‘str’, ‘END’]
注意: s.strip(rm) 删除 s 字符串中开头、结尾处的 rm 序列的字符。
rm中每个字符是独立的,在开头从左向右依次查找字符,如果是这几个中的一个就删除。当rm为空时,默认删除空白符(包括’\n’, ‘\r’, ‘\t’, ’ ‘),如下:
a = ’ 123’
a.strip()
结果: ‘123’
a=’\t\t123\r\n’
a.strip()
结果:‘123’
例如:
s='esa1t2t'
print s.strip('1t') #输出 esa1t2
s='esa1tt'
print s.strip('1t') #输出 esa
例子3:请利用filter()过滤出1~100中平方根是整数的数
import math
def is_sqr(x):
return math.sqrt(x)%1==0
print filter(is_sqr, range(1,101))
其他写法:
判断:
1、 int(v) == v
2、math.floor(num) == num
3、round(num) == num
4、r * r == x
不能用isinstance(math.sqrt(x),int):
math.sqrt(x) 返回的是float类型的数。math.sqrt(4)等于2.0 不是int 。所以利用isinstance(math.sqrt(x),int)该语句不会有输出结果。
3.4 python中自定义排序函数
sorted()也是一个高阶函数,它可以接收一个比较函数来实现自定义排序,比较函数的定义是,传入两个待比较的元素 x, y,如果 x 应该排在 y 的前面,返回 -1,如果 x 应该排在 y 的后面,返回 1。如果 x 和 y 相等,返回 0。
例子1:如果我们要实现倒序排序,只需要编写一个reversed_cmp函数:
def reversed_cmp(x, y):
if x > y:
return -1
if x < y:
return 1
return 0
这样,调用 sorted() 并传入 reversed_cmp 就可以实现倒序排序:
sorted([36, 5, 12, 9, 21], reversed_cmp)
[36, 21, 12, 9, 5]
例子2 对字符串排序时,有时候忽略大小写排序更符合习惯。请利用sorted()高阶函数,实现忽略大小写排序的算法。
def cmp_ignore_case(s1, s2):
return cmp(s1[:].lower(),s2[:].lower())
print sorted(['bob', 'about', 'Zoo', 'Credit'], cmp_ignore_case)
参考:
https://www.runoob.com/python/python-func-sorted.html sorted
https://www.runoob.com/python/att-list-sort.html list sort
4、python中返回函数
Python的函数不但可以返回int、str、list、dict等数据类型,还可以返回函数!
例子1 定义一个函数 f(),我们让它返回一个函数 g,可以这样写:
def f():
print 'call f()...'
# 定义函数g:
def g():
print 'call g()...'
# 返回函数g:
return g
x = f # 这个是指把函数f赋值给x 并没有调用
x = f() # 调用f() 并把返回值给x
x() # x指向函数,因此可以调用
call g()… # 调用x()就是执行g()函数定义的代码
返回函数可以把一些计算延迟执行。 由于可以返回函数,我们在后续代码里就可以决定到底要不要调用该函数。 注意 函数1里面的函数2 可以访问到函数1的变量
def calc_sum(lst):
def lazy_sum():
return sum(lst)
return lazy_sum
f = calc_sum([1, 2, 3, 4]) # # 调用calc_sum()并没有计算出结果,而是返回函数:
f()
例子2:请编写一个函数calc_prod(lst),它接收一个list,返回一个函数,返回函数可以计算参数的乘积。
def calc_prod(lst):
def lazy_prod() :
return reduce(lambda x,y:x*y,lst)
return lazy_prod
f = calc_prod([1, 2, 3, 4])
print f()