loj#2538. 「PKUWC2018」Slay the Spire

5 篇文章 0 订阅

题目
参考自zhou888的代码

Solution

首先有一个很明显的贪心策略:强化牌选得越多越好,当然,要攻击牌打得出去才行
i &lt; k i&lt;k i<k时,强化牌打 i i i张,攻击牌打 m − i m-i mi
i ≥ k i≥k ik时,强化牌打 k − 1 k-1 k1张,攻击牌打 m − k + 1 m-k+1 mk+1
两者结合,就是强化牌打 m i n ( i , k − 1 ) min(i,k-1) min(i,k1)张,攻击牌打 m − m i n ( i , k − 1 ) m-min(i,k-1) mmin(i,k1)
另一个很显然的就是:牌的顺序与最终答案无关,所以我们排序后,不会对最终答案造成影响
具体排序的正确性留坑
g i , j g_{i,j} gi,j表示前 i i i张强化牌,选 j j j张,所能取得的最优倍率之和
j ≤ k − 1 j≤k-1 jk1时, g i , j = a i ∑ j ≤ m i n ( i , m ) g i − 1 , j − 1 g_{i,j}=a_i\sum_{j≤min(i,m)}g_{i-1,j-1} gi,j=aijmin(i,m)gi1,j1
j &gt; k − 1 j&gt;k-1 j>k1时, g i , j = ∑ j ≤ m i n ( i , m ) g i − 1 , j − 1 g_{i,j}=\sum_{j≤min(i,m)}g_{i-1,j-1} gi,j=jmin(i,m)gi1,j1
f i , j f_{i,j} fi,j表示前 i i i张攻击牌,选 j j j张,所能取得的最优攻击之和
m − j &lt; k − 1 ( j &gt; m − k + 1 ) m-j&lt;k-1(j&gt;m-k+1) mj<k1(j>mk+1)时, f i , j = ∑ j ≤ m i n ( i , m ) ( j − 1 i − 1 ) a i + f i − 1 , j − 1 f_{i,j}=\sum_{j≤min(i,m)}(^{i-1}_{j-1})a_i+f_{i-1,j-1} fi,j=jmin(i,m)(j1i1)ai+fi1,j1
m − j ≥ k − 1 ( j ≤ m − k + 1 ) m-j≥k-1(j≤m-k+1) mjk1(jmk+1)时, f i , j = ∑ j ≤ m i n ( i , m ) ( j − 1 i − 1 ) a i f_{i,j}=\sum_{j≤min(i,m)}(^{i-1}_{j-1})a_i fi,j=jmin(i,m)(j1i1)ai
( j − 1 i − 1 ) (^{i-1}_{j-1}) (j1i1)的意义是 a i a_i ai可以更新所有当前已经计算过的答案

Code

#include<bits/stdc++.h>
using namespace std;
const int N=3001,M=998244353;
int i,j,k,n,m,a[N],f[N],g[N],c[N][N],T,ans;
inline char gc(){
	static char buf[100000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd(){
	int x=0,fl=1;char ch=gc();
	for (;ch<48||ch>57;ch=gc())if(ch=='-')fl=-1;
	for (;48<=ch&&ch<=57;ch=gc())x=(x<<3)+(x<<1)+(ch^48);
	return x*fl;
}
int main(){
	for (i=0;i<N;i++)
		for (j=1,c[i][0]=1;j<=i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%M;
	for (T=rd();T--;){
		n=rd(),m=rd(),k=rd();
		for (i=1;i<=n;i++) a[i]=rd();
		sort(a+1,a+n+1,greater<int>());
		memset(g,0,m+1<<2);
		memset(f,0,m+1<<2);
		g[0]=1;
		for (i=1;i<=n;i++)
			for (j=min(i,m);j;j--)
				if (j<=k-1) g[j]=(g[j]+1ll*g[j-1]*a[i])%M;
				else (g[j]+=g[j-1])%=M;
		for (i=1;i<=n;i++) a[i]=rd();
		sort(a+1,a+n+1);
		for (i=1;i<=n;i++)
			for (j=min(i,m);j;j--) f[j]=(f[j]+1ll*c[i-1][j-1]*a[i]+(j>m-k+1)*f[j-1])%M;
		ans=0;
		for (i=0;i<m;i++) ans=(ans+1ll*g[i]*f[m-i])%M;
		printf("%d\n",ans);
	}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值