
数据分析
文章平均质量分 83
幸福清风
专注python语言
展开
-
数据分析案例:亚洲国家人口数据计算
数据截图:该数据包含了2006年-2015年10年间亚洲地区人口数量数据,共10行50列数据。我们需要使用Numpy完成如下数据任务:计算2015年各个国家人口数据计算朝鲜历史各个时期人口数据计算缅甸2014年的人口数据计算每一个国家历史平均人口数据计算亚洲2015年总人口,及平均人口计算印度、柬埔寨、阿富汗在2011、2012、2013年总人口及平均人口计算任意两个国家原创 2017-12-19 17:54:09 · 4400 阅读 · 2 评论 -
Python数据分析之pandas学习
Python中的pandas模块进行数据分析。接下来pandas介绍中将学习到如下8块内容:1、数据结构简介:DataFrame和Series2、数据索引index3、利用pandas查询数据4、利用pandas的DataFrames进行统计分析5、利用pandas实现SQL操作6、利用pandas进行缺失值的处理7、利用pandas实现Excel的数据透视表功能8、多层索引的使用一、数据结构介绍...原创 2018-04-10 19:40:12 · 772 阅读 · 0 评论 -
pandas用法大全
一、生成数据表 1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:import numpy as npimport pandas as pd2、导入CSV或者xlsx文件:df = pd.DataFrame(pd.read_csv('name.csv',header=1))df = pd.DataFrame(pd.read_excel('name.xlsx'))3、用p...转载 2018-04-11 20:02:26 · 374 阅读 · 0 评论 -
Jmeter使用入门
Jmeter简介Jmeter的基本概念百度百科:Apache JMeter是Apache组织开发的基于Java的压力测试工具。用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域。 它可以用于测试静态和动态资源,例如静态文件、Java 小服务程序、CGI 脚本、Java 对象、数据库、FTP 服务器, 等等。JMeter 可以用于对服务器、网络或对象模拟巨大的负载,来自不...转载 2018-04-26 11:31:41 · 291 阅读 · 0 评论 -
python 数据分析-读写数据csv、xlsx文件
1、读写csv文件可以使用基础python实现,或者使用csv模块、pandas模块实现。基础python读写csv文件读写单个CSV以下为通过基础python读取CSV文件的代码,请注意,若字段中的值包含有","且该值没有被引号括起来,则无法通过以下的简单代码获取准确的数据。inputFile="要读取的文件名"outputFile=“写入数据的csv文件名”with op...原创 2018-08-31 14:20:23 · 2495 阅读 · 0 评论 -
Python数据结构常见的八大排序算法(详细整理)
前言八大排序,三大查找是《数据结构》当中非常基础的知识点,在这里为了复习顺带总结了一下常见的八种排序算法。常见的八大排序算法,他们之间关系如下: 排序算法.png 他们的性能比较: 下面,利用Python分别将他们进行实现。 直接插入排序算法思想:直接插入排序.gif 直接插入排序的核心思想就是:将数组中的所有元素依次跟前面已...转载 2018-09-06 18:20:34 · 1037 阅读 · 0 评论 -
Python 中,matplotlib绘图无法显示中文的问题
在python中,默认情况下是无法显示中文的,如下代码:import matplotlib.pyplot as plt # 定义文本框和箭头格式decisionNode = dict(boxstyle = "sawtooth", fc = "0.8")leafNode = dict(boxstyle = "round4", fc = "0.8")arrow_args = dict(...转载 2018-11-08 18:05:52 · 3601 阅读 · 0 评论 -
利用numpy删除DataFrame某一行/列、多行内容
一、用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False)参数说明:labels:就是要删除的行列的名字,用列表给定axis: 默认为0,指删除行,因此删除columns时要指定axis=1;index:直接指定要删除的行columns: 直接指定要删除的列inplace=False...原创 2019-09-04 13:37:47 · 9180 阅读 · 0 评论