机器学习入门
文章平均质量分 88
介绍机器学习需要学习的知识以及常见的算法和经典案例
幸福清风
专注python语言
展开
-
ubuntu 16.04系统中nvidai、cuda、cudnn安装及注意事项
一、NVIDAI driver显卡驱动安装首先看一下笔记本显卡型号lspci |grep VGA 在命令行敲过这个命令后,有些台式机或笔记本会显示nvidia显卡,如下所示:但是我的笔记本电脑 只显示nouveau卡(集成显卡)需要执行下面命令才能找到nvidia显卡lspci |grep 3Da.下载nvidia driver 安装包https://www.geforce.cn/drivers/beta-legacy下...原创 2020-11-11 17:23:15 · 356 阅读 · 0 评论 -
AI 人工智能学习经典书单
人工智能相关岗位中,涉及到的内容包含:算法、深度学习、机器学习、自然语言处理、数据结构、Tensorflow、Python 、数据挖掘、搜索开发、神经网络、视觉度量、图像识别、语音识别、推荐系统、系统算法、图像算法、数据分析、概率编程、计算机数学、数据仓库、建模等关键词,基本涵盖了现阶段人工智能细分领域的人才结构。将上面的岗位涉及到的知识和技术划类,就形成了今天的五份书单:1人工智能科普类:人工智...原创 2018-05-16 17:58:19 · 2774 阅读 · 2 评论 -
机器学习简介及学习思维导图
什么是机器学习机器学习是人工智能的一个分支。人工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习算法是一类从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测的算法为什么需要机器学习21世纪机器学习又一次被人们关注,而这些关注的背后是因为整个环境的改变,我们的数...原创 2018-03-08 13:02:08 · 5228 阅读 · 4 评论 -
机器学习:Scikit-learn与特征工程
“数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这句话很好的阐述了数据在机器学习中的重要性。大部分直接拿过来的数据都是特征不明显的、没有经过处理的或者说是存在很多无用的数据,那么需要进行一些特征处理,特征的缩放等等,满足训练数据的要求。我们将初次接触到Scikit-learn这个机器学习库的使用Scikit-learnPython语言的机器学习工具所有人都适用,可在不同的上下文中重用基...原创 2018-03-08 13:07:16 · 835 阅读 · 0 评论 -
机器学习:sklearn数据集与机器学习组成
机器学习组成:模型、策略、优化《统计机器学习》中指出:机器学习=模型+策略+算法。其实机器学习可以表示为:Learning= Representation+Evalution+Optimization。我们就可以将这样的表示和李航老师的说法对应起来。机器学习主要是由三部分组成,即:表示(模型)、评价(策略)和优化(算法)。表示(或者称为:模型):Representation表示主要做的就是建模,故...原创 2018-03-08 13:13:32 · 1868 阅读 · 0 评论 -
Scikit-learn的分类器算法:k-近邻及案例
k-近邻算法采用测量不同特征值之间的距离来进行分类优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高使用数据范围:数值型和标称型一个例子弄懂k-近邻电影可以按照题材分类,每个题材又是如何定义的呢?那么假如两种类型的电影,动作片和爱情片。动作片有哪些公共的特征?那么爱情片又存在哪些明显的差别呢?我们发现动作片中打斗镜头的次数较多,而爱情片中接吻镜头相对更多。当然动作片中也有...原创 2018-03-08 13:18:26 · 1688 阅读 · 0 评论 -
sklearn分类器:朴素贝叶斯
朴素贝叶斯朴素贝叶斯(Naive Bayes)是一个非常简单,但是实用性很强的分类模型。朴素贝叶斯分类器的构造基础是贝叶斯理论。概率论基础概率定义为一件事情发生的可能性。事情发生的概率可以 通过观测数据中的事件发生次数来计算,事件发生的概率等于改事件发生次数除以所...原创 2018-03-11 17:39:14 · 1838 阅读 · 0 评论 -
sklearn分类器算法:逻辑回归及案例分析
分类算法之逻辑回归逻辑回归(Logistic Regression),简称LR。它的特点是能够是我们的特征输入集合转化为0和1这两类的概率。一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大。如果非要应用进入,可以使用逻辑回归。了解过线性回...原创 2018-03-11 17:41:00 · 18050 阅读 · 0 评论 -
sklearn分类器性能评估
分类器性能评估在许多实际问题中,衡量分类器任务的成功程度是通过固定的性能指标来获取。一般最常见使用的是准确率,即预测结果正确的百分比。然而有时候,我们关注的是负样本是否被正确诊断出来。例如,关于肿瘤的的判定,需要更加关心多少恶性肿瘤被正确的诊断出来。也就是说,在二...原创 2018-03-11 17:42:27 · 3404 阅读 · 0 评论 -
sklearn分类器算法:决策树与随机森林及案例分析
分类算法之决策树决策树是一种基本的分类方法,当然也可以用于回归。我们一般只讨论用于分类的决策树。决策树模型呈树形结构。在分类问题中,表示基于特征对实例进行分类的过程,它可以认为是if-then规则的集合。在决策树的结构中,每一个实例都被一条路径或者一条规则所覆盖。...原创 2018-03-11 17:43:46 · 19795 阅读 · 0 评论 -
用 Kaggle 经典案例教你用 CNN 做图像分类!
我们来看一个 Kaggle 上比较经典的一个图像分类的比赛 CIFAR( CIFAR-10 - Object Recognition in Images ),这个比赛现在已经关闭了,但不妨碍我们来去通过它学习一下卷积神经网络做图像识别的代码结构。相信很多学过深度学习的同学都尝试过这个比赛,如果对此比较熟悉的可以跳过本篇,如果没有尝试过的同学可以来学习一下哈。整个代码已经放在了我的 GitHub 上...转载 2018-03-20 11:33:07 · 14466 阅读 · 7 评论 -
如何自学人工智能?
不少同学跃跃欲试,想投入 AI 的怀抱,但苦于不知如何下手。其中,人工智能的核心就是机器学习(Machine Learning),它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。我们今天就来分享一篇来自 EliteDataScience 上专门讲给机器学习入门自学者的教程,一步步教你如何从基础小白进阶为 ML 大拿。快上车吧,别找硬币了,这趟车不要钱!<img ...原创 2018-05-16 13:07:08 · 8639 阅读 · 1 评论 -
机器学习基础—Kaggle泰坦尼克预测(完整分析)
1.引言我们先找个简单的实际例子,来看看,所谓的数据挖掘或者机器学习实际应用到底是怎么样一个过程。2.背景2.1 关于KaggleKaggle是一个数据分析建模的应用竞赛平台,有点类似KDD-CUP(国际知识发现和数据挖掘竞赛),企业或者研究者可以将问题背景、数据、期望指标等发布到Kaggle上,以竞赛的形式向广大的数据科学家征集解决方案。而热爱数(dong)据(shou)挖(zhe)掘(teng...原创 2017-11-20 00:01:16 · 3412 阅读 · 0 评论 -
机器学习回归算法—线性回归及案例分析
一、回归算法回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,...原创 2018-03-24 18:40:06 · 48578 阅读 · 4 评论 -
机器学习回归算法—性能评估欠拟合与过拟合
机器学习中的泛化,泛化即是,模型学习到的概念在它处于学习的过程中时模型没有遇见过的样本时候的表现。在机器学习领域中,当我们讨论一个机器学习模型学习和泛化的好坏时,我们通常使用术语:过拟合和欠拟合。我们知道模型训练和测试的时候有两套数据,训练集和测试集。在对训练数据进行拟合时,需要照顾到每个点,而其中有一些噪点,当某个模型过度的学习训练数据中的细节和噪音,以至于模型在新的数据上表现很差,这样的话模型...原创 2018-03-24 18:44:10 · 1192 阅读 · 0 评论 -
机器学习回归算法—岭回归及案例分析
一、回归算法之岭回归具有L2正则化的线性最小二乘法。岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最...原创 2018-03-24 18:47:08 · 5289 阅读 · 0 评论 -
机器学习非监督学习—k-means及案例分析
一、非监督学习无监督学习,顾名思义,就是不受监督的学习,一种自由的学习方式。该学习方式不需要先验知识进行指导,而是不断地自我认知,自我巩固,最后进行自我归纳,在机器学习中,无监督学习可以被简单理解为不为训练集提供对应的类别标识(label),其与有监督学习的对比如...原创 2018-03-24 21:29:06 · 2665 阅读 · 0 评论 -
机器学习Tensorflow基础知识、张量与变量
TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Goog...原创 2018-03-25 20:43:30 · 7158 阅读 · 0 评论 -
机器学习Tensorflow基本操作:线程队列图像
一、线程和队列在使用TensorFlow进行异步计算时,队列是一种强大的机制。为了感受一下队列,让我们来看一个简单的例子。我们先创建一个“先入先出”的队列(FIFOQueue),并将其内部所有元素初始化为零。然后,我们构建一个TensorFlow图,它从队列前端取...原创 2018-03-26 15:49:41 · 1426 阅读 · 0 评论