keras作弊手册

缩写:

contrib 贡献(contribution)

val    validation  验证集

acc    accuracy 精确度/准确性

epoch 时期/时代/迭代周期

SGD  Stochastic Gradient Descent 随机梯度下降

LSTM Long Short Term Memory 长短期记忆,一种时间递归神经网络,解决RNN的长期依赖问题。

-------------------------------------------------------------------------------------------------------------------

from keras.models import Sequential

model = Sequential()

 

用于模型中的各个层,如全连接层/卷积层/池化层/平坦层等

from keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten

model.add(Dense...) 

model.add(Dropout(0.25))     Dropout层不仅可以解决过拟合问题,还可以增加准确率。

                                             每次训练时,会随机的抛弃25%的神经元,以避免过度拟合

 

from keras.layers.embedding import Embedding

from keras.layers.recurrent import SimpleRNN           周期性的

SimpleRNN(units = 16)    建立16个神经元的RNN层,替代平坦层Flatten()

--------------------------------------------------------------------------------------------------------------------

工具函数:

绘制图像标签预测值:plot_images_labels_prediction()

显示预测概率:show_predicted_probability()

保存“权重+时间”:

显示训练历史:show_train_history()

 

show_predicted_probability(y, prediction, x_img, Predicted_Prebalility, i):

    print('Label: ', label_dict[y[i][0]], 'predict', label_dict[prediction[i]])

    plt.figure(figsize = (2, 2))

    plt.imshow(np.reshape(x_img_test[i], (32, 32, 3)))

    plt.show()

    for j in range(10):

        print(label_dict[j] + 'Probalility: %1.9f' % (Predicted_Probalility[i][j]))

show_train_history(history):          train_acc, val_acc是字符串,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值