缩写:
contrib 贡献(contribution)
val validation 验证集
acc accuracy 精确度/准确性
epoch 时期/时代/迭代周期
SGD Stochastic Gradient Descent 随机梯度下降
LSTM Long Short Term Memory 长短期记忆,一种时间递归神经网络,解决RNN的长期依赖问题。
-------------------------------------------------------------------------------------------------------------------
from keras.models import Sequential
model = Sequential()
用于模型中的各个层,如全连接层/卷积层/池化层/平坦层等
from keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten
model.add(Dense...)
model.add(Dropout(0.25)) Dropout层不仅可以解决过拟合问题,还可以增加准确率。
每次训练时,会随机的抛弃25%的神经元,以避免过度拟合
from keras.layers.embedding import Embedding
from keras.layers.recurrent import SimpleRNN 周期性的
SimpleRNN(units = 16) 建立16个神经元的RNN层,替代平坦层Flatten()
--------------------------------------------------------------------------------------------------------------------
工具函数:
绘制图像标签预测值:plot_images_labels_prediction()
显示预测概率:show_predicted_probability()
保存“权重+时间”:
显示训练历史:show_train_history()
show_predicted_probability(y, prediction, x_img, Predicted_Prebalility, i): print('Label: ', label_dict[y[i][0]], 'predict', label_dict[prediction[i]]) plt.figure(figsize = (2, 2)) plt.imshow(np.reshape(x_img_test[i], (32, 32, 3))) plt.show() for j in range(10): print(label_dict[j] + 'Probalility: %1.9f' % (Predicted_Probalility[i][j])) |
show_train_history(history): train_acc, val_acc是字符串, |