一、题目
给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
提示:
n = height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/container-with-most-water
二、解题
方法一 暴力法
class Solution {
public:
int maxArea(vector<int>& height) {
auto size = height.size();
int i = 0, j = 1;
int max = 0;
for (int i = 0; i < size - 1; ++i)
{
for (int j = i + 1; j < size; ++j)
{
int area = calcArea(height, i, j);
max = max < area ? area : max;
}
}
return max;
}
private:
int calcArea(const vector<int>& height, int pos1, int pos2)
{
return min(height[pos1], height[pos2]) * abs(pos1 - pos2);
}
};
时间复杂度O(n^2)不高效,不能满足题目要求。
方法二、双指针法
思路:矩形的面积 = 高 * 宽,此题等价于求最大面积,高度由较短的一边决定,因为可以找到比较短的板更长的板,就可能找到更大的面积。
通过上述想法,可以采用两个指针分别指向数组的首尾,通过移动较短高度的指针,来查找到最大面积,时间复杂度O(n)大大节省了暴力法中的重复计算问题。
class Solution {
public:
int maxArea(vector<int>& height) {
if (height.empty()) return 0;
int i = 0, j = height.size() - 1;
int max = 0;
while(i != j)
{
int area = min(height[i], height[j]) * (j - i);
max = max < area ? area : max;
if (height[i] < height[j])
{
++i;
}
else
{
--j;
}
}
return max;
}
};