python中的矩阵相乘

1. python中的矩阵(maxtrix)相乘与线性代数的算法一样,例如:
首先引入numpy

import numpy as np;
A =np.array([[1,2,3],
            [4,5,6]])
B = np.array([[1,4],
              [2,5],
              [3,6]])
C = A * 2
D = np.dot(A,B)
E = np.dot(B,A)
J = A.shape
print(C)
print(D)
print(E)
print(J)

其运行结果为:
[[ 2 4 6]
[ 8 10 12]]
[[14 32]
[32 77]]
[[17 22 27]
[22 29 36]
[27 36 45]]
(2, 3)
注意:
1.dot函数用于矩阵乘法,对于二维数组,它计算的是矩阵乘积,对于一维数组,它计算的是内积。注意交换矩阵的前后位置会导致不同的结果。
2.使用shape可以获得矩阵的大小

3. 行列式相乘须满足左边的列等于右边的行

2. 创建一个单位矩阵

import numpy as np;
A =np.array([[1,2,3],
            [4,5,6]])
F = np.eye(3)
G = np.dot(A,F)
print(F)
print(G)

运行结果为:

[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
[[1. 2. 3.]
 [4. 5. 6.]]

3. 矩阵转置
1.

import numpy as np;
A =np.array([[1,2,3],
            [4,5,6]]);
H = A.T
print(H)
import numpy as np;
A =np.array([[1,2,3],
            [4,5,6]]);
J= A.transpose()
print(J)

两者的运行结果都是一样的为:
1.

[[1 4]
 [2 5]
 [3 6]]``

2

[[1 4]
 [2 5]
 [3 6]]

4.计算行列式的值
python中行列式的计算方法和线性代数中的原理是一样的。

import numpy as np;
A =np.array([[1,2,3],
            [4,5,6],
            [7,8,9]])
B = np.linalg.det(A)

print(A)
print(B)

其运行结果为:

[[1 2 3]
 [4 5 6]
 [7 8 9]]
6.66133814775094e-16
  • 17
    点赞
  • 108
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值