set也是个好东西,先贴set基本操作吧。。
set的基本操作:
begin()
返回指向第一个元素的迭代器
clear()
清除所有元素
count()
返回某个值元素的个数
empty()
如果集合为空,返回true
end()
返回指向最后一个元素的迭代器
equal_range()
返回集合中与给定值相等的上下限的两个迭代器
erase()
删除集合中的元素
find()
返回一个指向被查找到元素的迭代器
get_allocator() 返回集合的分配器
insert()
在集合中插入元素
lower_bound()
返回指向大于(或等于)某值的第一个元素的迭代器
key_comp()
返回一个用于元素间值比较的函数
max_size()
返回集合能容纳的元素的最大限值
rbegin()
返回指向集合中最后一个元素的反向迭代器
rend()
返回指向集合中第一个元素的反向迭代器
size()
集合中元素的数目
swap()
交换两个集合变量
upper_bound()
返回大于某个值元素的迭代器
value_comp()
返回一个用于比较元素间的值的函数
/**
* set(multiset)的应用:
* STL里的set就是由红黑树(一种平衡BST)实现的,所以复杂度,插入删除查找都是O(logn)
* 还是挺好用的,multiset不同于set的是可以存相同的值,虽然STL稍微慢点,不过据说ACM一般不卡STL。
* 伸展树什么的就手写吧。
* 本题思路:这题是白书上介绍set的一题吧,就是每次更新当前具有优势的点,并输出当前具有优势点的个数。
* 用multiset对x从小到大排序,x相等时按y从小到大排序,因为可能是重点,所以用multiset
* 每次新出现的groom,要判断他是否具有优势,就要看multiset中是否有x, y比他小的,如果有
* 则不具优势,如果没有则具优势,那么将其插入,又因为他的插入可能使的其他原来具有优势的grooms失去优势
* 所以再根据条件删除就行了。。大白书上讲的已经很清楚啦。。。
*/
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <set>
using namespace std;
struct Point {
int x, y;
bool operator < (const Point &a) const {
return x < a.x || (x == a.x && y < a.y);
}
};
multiset<Point> S;
multiset<Point>::iterator it;
int main()
{
int t; scanf("%d", &t);
for(int ct = 1; ct <= t; ct ++) {
int n;
S.clear();
if(ct > 1) printf("\n");
printf("Case #%d:\n", ct);
scanf("%d", &n);
while(n --) {
int a, b;
scanf("%d%d", &a, &b);
Point P; P.x = a; P.y = b;
it = S.lower_bound(P);
if(it == S.begin() || (--it)->y > b) {
S.insert(P);
it = S.upper_bound(P);
while(it != S.end() && it->y >= b) S.erase(it ++);
}
printf("%d\n", S.size());
}
}
return 0;
}