题目及测试
package pid131;
/* 分割回文串
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
返回 s 所有可能的分割方案。
示例:
输入: "aab"
输出:
[
["aa","b"],
["a","a","b"]
]
*/
import java.util.List;
public class main {
public static void main(String[] args) {
String[] testTable = {"aab","232","6574"};
for (String ito : testTable) {
test(ito);
}
}
private static void test(String ito) {
Solution solution = new Solution();
List<List<String>> rtn;
long begin = System.currentTimeMillis();
System.out.println("ito="+ito);
System.out.println();
//开始时打印数组
rtn= solution.partition(ito);//执行程序
long end = System.currentTimeMillis();
System.out.println("rtn=" );
for(int i=0;i<rtn.size();i++){
for(int j=0;j<rtn.get(i).size();j++){
System.out.print(rtn.get(i).get(j)+" ");
}
System.out.println();
}
System.out.println();
System.out.println("耗时:" + (end - begin) + "ms");
System.out.println("-------------------");
}
}
没想出来
解法1(别人的)
1、每一个结点表示剩余没有扫描到的字符串,产生分支是截取了剩余字符串的前缀;
2、产生前缀字符串的时候,判断前缀字符串是否是回文。
如果前缀字符串是回文,则可以产生分支和结点;
如果前缀字符串不是回文,则不产生分支和结点,这一步是剪枝操作。
3、在叶子结点是空字符串的时候结算,此时从根结点到叶子结点的路径,就是结果集里的一个结果,使用深度优先遍历,记录下所有可能的结果。
采用一个路径变量 path 搜索,path 全局使用一个(注意结算的时候,需要生成一个拷贝),因此在递归执行方法结束以后需要回溯,即将递归之前添加进来的元素拿出去;
path 的操作只在列表的末端,因此合适的数据结构是栈。
验证回文串那里,每一次都得使用“两边夹”的方式验证子串是否是回文子串。
于是思考“用空间换时间”,利用动态规划把结果先算出来,这样就可以以 O(1) 的时间复杂度直接得到一个子串是否是回文。
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class Solution2 {
public List<List<String>> partition(String s) {
int len = s.length();
List<List<String>> res = new ArrayList<>();
if (len == 0) {
return res;
}
// 预处理
// 状态:dp[i][j] 表示 s[i][j] 是否是回文
boolean[][] dp = new boolean[len][len];
// 状态转移方程:在 s[i] == s[j] 的时候,dp[i][j] 参考 dp[i + 1][j - 1]
for (int right = 0; right < len; right++) {
// 注意:left <= right 取等号表示 1 个字符的时候也需要判断
for (int left = 0; left <= right; left++) {
if (s.charAt(left) == s.charAt(right) && (right - left <= 2 || dp[left + 1][right - 1])) {
dp[left][right] = true;
}
}
}
Stack<String> stack = new Stack<>();
backtracking(s, 0, len, dp, stack, res);
return res;
}
private void backtracking(String s, int start, int len, boolean[][] dp, Stack<String> path, List<List<String>> res) {
if (start == len) {
res.add(new ArrayList<>(path));
return;
}
for (int i = start; i < len; i++) {
// 剪枝
if (!dp[start][i]) {
continue;
}
path.add(s.substring(start, i + 1));
backtracking(s, i + 1, len, dp, path, res);
path.pop();
}
}
}
解法2(成功,24ms,较慢)
public class Solution {
public List<List<String>> result=new ArrayList<>();
public HashMap<String, Boolean> mapPalindrome=new HashMap<>();
public List<List<String>> partition(String s) {
List<String> list = new ArrayList<String>();
backTrace(s, 0, list);
return result;
}
private void backTrace(String s,int begin,List<String> list){
if(begin == s.length()) {
result.add(new ArrayList<String>(list));
}
for(int i=begin;i<s.length();i++) {
if(isPalindrome(s, begin, i)) {
list.add(s.substring(begin, i + 1));
backTrace(s, i + 1, list);
list.remove(list.size() - 1);
}
}
}
private boolean isPalindrome(String s,int begin,int end){
String key = begin + "-" + end;
if(mapPalindrome.containsKey(key)){
return mapPalindrome.get(key);
}
boolean result=true;
int length=end - begin + 1;
s = s.substring(begin, end + 1);
if(length==0||length==1){
result=true;
}else{
int i=0;
int j=length-1;
while(i<=j){
if(s.charAt(i)!=s.charAt(j)){
result=false;
break;
}
i++;
j--;
}
}
mapPalindrome.put(s, result);
return result;
}
}