BZOJ 3258 或 JZOJ 3348. 【NOI2013模拟】秘密任务

H y p e r l i n k Hyperlink Hyperlink

https://www.lydsy.com/JudgeOnline/problem.php?id=3258


D e s c r i p t i o n Description Description

给定一张 n n n m m m边无向图,现有一个 s b sb sb要从点1走到点 n n n,这个 s b sb sb只走最短路,在某个点设置站点可以废掉这个点的一条边,但需要耗费一定代价,现在要让这个 s b sb sb无论怎么走都走不到终点,求最小设立的站点总代价以及方案是否唯一

n ≤ 400 , m ≤ 4000 n\leq 400,m\leq 4000 n400,m4000


S o l u t i o n Solution Solution

首先因为这个 s b sb sb直走最短路,所以我们将原图的最短路会经过的边处理出来,这样图就变成了一张有向无环图(由于笔者考试时忘记这个算法咋写了,导致没拿分2333)

具体流程:

  1. 从点1和点 n n n分别出发跑一遍最短路,这两点与其他点的距离分别记为 m i n s i mins_i minsi m i n t i mint_i minti
  2. 枚举每条边,若这条边 ( u , v , w ) (u,v,w) (u,v,w)是其中一条点1到点 n n n最短路的必经边,当且仅当 m i n s u + m i n t v + w = m i n s n mins_u+mint_v+w=mins_n minsu+mintv+w=minsn

随后变成了有向无环图后,问题变成了:在这张图中切断若干条边,使得点1和点 n n n不连通得同时价值最小

把点1看做源点,点 n n n看做汇点,这 t m tm tm不就是一道裸的最小割吗?(考试时就想到了2333)

好了到这里你就愉快的有40分了,但如何判断方案唯一呢?

从点1和点 n n n遍历一遍剩余流,判断一下即可(据说还有大佬用 T a r j a n Tarjan Tarjan%%%)

时间复杂度: O ( n 2 m ) O(n^2m) O(n2m) x j q xjq xjq说这是 d i n i c dinic dinic的复杂度,但不知道为啥题解上写 O ( n m 2 ) O(nm^2) O(nm2)


C o d e Code Code
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define LL long long
#define N 410
#define M 4010
using namespace std;
int n,m,a[N];
LL mins[N],mint[N],ans;
inline LL read()
{
    char c;int f=0,d=1;
    while(c=getchar(),!isdigit(c)) if(c=='-') d=-1;f=(f<<3)+(f<<1)+c-48;
    while(c=getchar(),isdigit(c)) f=(f<<3)+(f<<1)+c-48;
    return d*f;
}
struct Spfa
{
	int l[N],tot;
	struct node{int from,next,to,w;}e[M<<1];
	inline void add(int u,int v,int w)//建边
	{
		e[++tot]=(node){u,l[u],v,w};l[u]=tot;
		e[++tot]=(node){v,l[v],u,w};l[v]=tot;
		return;
	}
	inline void run(int S,LL *dis)//Spfa
	{
	    queue<int>q;
	    bool vis[N]={0};for(register int i=1;i<=n;i++) dis[i]=1LL<<50LL;
	    q.push(S);vis[S]=true;dis[S]=0;
	    while(q.size())
	    {
	        int x=q.front();q.pop();vis[x]=true;
	        for(register int i=l[x];i;i=e[i].next)
	        {
	            int y=e[i].to,w=e[i].w;
	            if(dis[x]+w<dis[y])
	            {
	                dis[y]=dis[x]+w;
	                if(!vis[y]) vis[y]=true,q.push(y);
	            }
	        }
	        vis[x]=false;
	    }
	    return;
	}
}A;
struct Dinic
{
	int l[N],tot,d[N],s,t;
	struct node{int next,to,w;}e[M<<1];
	inline void add(int u,int v,int w)
	{
		e[tot]=(node){l[u],v,w};l[u]=tot++;
		e[tot]=(node){l[v],u,0};l[v]=tot++;
		return;
	}
	inline bool bfs()
	{
	    memset(d,-1,sizeof(d));
	    queue<int>q;d[s]=0;q.push(s);
	    while(q.size())
	    {
	        int x=q.front();q.pop();
	        for(int i=l[x];~i;i=e[i].next)
	        {
	            int y=e[i].to;
	            if(e[i].w&&d[y]==-1)
	            {
	                d[y]=d[x]+1;
	                if(y==t) return true;
	                q.push(y);
	            }
	        }
	    }
	    return false;
	}
	inline int dfs(int x,int flow)
	{
	    if(x==t||!flow) return flow;
	    int rest=0,f=0;
	    for(int i=l[x];~i;i=e[i].next)
	    {
	        int y=e[i].to;
	        if(d[x]+1==d[y]&&e[i].w)
	        {
	            f=dfs(y,min(flow-rest,e[i].w));
	            if(!f) d[y]=-1;
	            e[i].w-=f;rest+=f;e[i^1].w+=f;
	        }
	    }
	    if(!rest) d[x]=-1;
	    return rest;
	}
	inline LL dinic()
	{
		LL res=0;
	    while(bfs()) res+=dfs(s,1<<30);
	    return res;
	}
}B;
int vis[N];
inline int wei(int u,int v){return v==n?a[u]:min(a[u],a[v]);}
inline void dfs1(int x)
{
	vis[x]=1;
	for(register int i=B.l[x];~i;i=B.e[i].next)
	{
		int y=B.e[i].to;
		if(!vis[y]&&B.e[i].w) dfs1(y);
	}
	return;
}
inline void dfs2(int x)
{
	vis[x]=2;
	for(register int i=B.l[x];~i;i=B.e[i].next)
	{
		int y=B.e[i].to;
		if(!vis[y]&&B.e[i^1].w) dfs2(y);
	}
	return;
}
inline bool special()
{
	LL sum=0;
	for(register int i=1;i<n;i++)
	 if(vis[i]==1)
	  for(register int j=B.l[i],y;~j;j=B.e[j].next)
	   if(vis[y=B.e[j].to]==2&&!(j&1))
	    {
	    	if(a[i]==a[y]) return 0;
	    	sum+=wei(i,y);
		}
	return sum==ans;
}
signed main()
{
	for(int t=read();t--;)
	{
		A.tot=B.tot=0;
		memset(A.l,0,sizeof(A.l));
		memset(B.l,-1,sizeof(B.l));
		n=read();m=read();B.s=1;B.t=n;
		for(register int i=1;i<n;i++) a[i]=read();
		for(register int i=1,u,v,w;i<=m;i++)
		{
			u=read();v=read();w=read();
			A.add(u,v,w);
		}
		A.run(1,mins);A.run(n,mint);
		for(register int i=1;i<=A.tot;i++)
		{
			int u=A.e[i].from,v=A.e[i].to,w=A.e[i].w;
			if(mins[u]+mint[v]+w>mins[n]) continue;
			B.add(u,v,wei(u,v));
		}
		ans=B.dinic();
		memset(vis,0,sizeof(vis));
		dfs1(1);dfs2(n);
		if(special()) printf("Yes ");
        else printf("No ");
        printf("%lld\n",ans);
	}
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值