线性代数复习

1.行列式

1.1 行列式的概念、性质、计算

逆序数: 所有的逆序的总数


行列式定义: 不同行不同列元素乘积代数和(最终结果是一个数)


行列式的一些性质
(1)行列互换(转置),行列式的值不变
(2)两行(列)互换,行列式变号
(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数 k,等于用数 k乘此行列式
(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘 k 加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为 0。

行列式的计算方法:

在这里插入图片描述
在这里插入图片描述

1.2 重要行列式

上(下)三角(主对角线)行列式的值 等于主对角线元素的乘积

副对角线行列式的值 等于副对角线元素的乘积X (-1)的二分之一n乘n-1次方
在这里插入图片描述

在这里插入图片描述

1.3 按行(列)展开

任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值

行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘 积之和等于 0

1.4 行列式公式

在这里插入图片描述

1.5 克莱姆法则

非 齐 次 线 性 方 程 组 的 系 数 行 列 式 不 为 0 , 那 么 方 程 为 唯 一 解

如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为 0

若齐次线性方程组的系数行列式不为 0,则齐次线性方程组只有 0 解;如
果方程组有非零解,那么必有 D=0。

2.矩阵

矩阵是一个数表,可以将很多很复杂的数据放到一张表里

2.1 矩阵的运算(加减乘除)

结果仍然是一个矩阵
矩阵乘法要求前列后行一致 (中间相等取两头)

矩阵乘法不满足交换律;

AB=O不能推出 A=O或 B=O

矩阵的加减

对应位置相加减,得到的结果放回对应位置
在这里插入图片描述

矩阵乘法(中间相等取两头)
两个矩阵要可以相乘,必须是A矩阵的列数B矩阵的行数相等,才可以进行乘法,矩阵乘法的原则是,A矩阵的第i行中的元素分别与B矩阵中的第j列中的元素相乘再求和,得到的结果就是新矩阵的第i行第j列的值

矩阵除法
一般不说矩阵的除法。都是讲的矩阵求逆。

2.2 转置矩阵(Aij位置换到Aji)

在这里插入图片描述

2.3 矩阵的逆(行列式不为0,与别的同阶矩阵相乘结果是单位阵)

定义:
对一个 n 阶方阵 A ,如果存在另一个 n 阶方阵 B,它们满足:AB = BA = E(其中 E 为单位矩阵),那么两矩阵互为逆矩阵。换句话说,A 的逆矩阵为 B ,B 的逆矩阵为 A。

注:A可逆的充要条件是 |A| ≠0

在这里插入图片描述

在这里插入图片描述

2.4 矩阵的初等变换

两行(列)互换
一行(列)乘非零常数 c
一行(列)乘 k 加到另一行(列)

2.5 初等矩阵

单位矩阵 E经过一次初等变换得到的矩阵

初等行(列)变换相当于左(右)乘相应的初等矩阵

初等矩阵均为可逆矩阵

2.6 矩阵的秩

定义: 非零子式的最高阶数

在这里插入图片描述

秩的求法:

(1)A 为抽象矩阵:由定义或性质求解;
(2)A为数字矩阵: A→初等行变换 →阶梯型(每行第一个非零元素下面的元素均为 0),则 r(A)=非零行的行数

2.7 伴随矩阵

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.8 分块矩阵

分块矩阵求逆
在这里插入图片描述

3.向量

3.1向量的概念 运算

向量的概念

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。
箭头所指:代表向量的方向;
线段长度:代表向量的大小。
与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB上面一个箭头。
实际上向量有多种记法,可以用元组表示一个向量,如 (x1, x2) 或 < x1, x2>。
在线性代数中,n元向量可以用n×1矩阵表示:(向量中的每个元素xn,都称作向量的一个分量)
在这里插入图片描述

向量的模

向量的模即向量的长度,如果A是n维向量,则A的模标记为:
在这里插入图片描述

向量的加减运算

向量的加法运算同矩阵的加法,我们需要理解的是矩阵加法在二维直角坐标系中系上的几何意义
在这里插入图片描述
在这里插入图片描述

3.2线性组合 和 线性表示(线性表出)

线性组合 线性表出的概念

若对于n+1维向量组 α1,α2,α3,…,αn,β;
存在一组数k1,k2,…,kn,使得
β=α1+α2+α3+···+αn 成立;
则可以说:
向量β是向量组α1,α2,…,αn的一个线性组合
向量β可由向量组α1,α2,…,αn的线性表出

线性表示的充要条件:非零列向量 β可由α1,α2,, , αs线性表示
非齐次线性方程组( α1,α2,, , αs)(x1,x2,, , xs)T=β有解
r(α1,α2,, , αs)=r(α1,α2,, , αs,β)

验证某个向量是否为一个向量组的线性组合,或者说验证某个向量能否由一个向量组线性表出的关键,即从定义出发
尝试找出n个实数,使得 β=α1+α2+α3+···+αn 成立

线性表示的充分条件: 若α1,α2,, , αs线性无关, α1,α2,, , αs,β线性相关,则 β可由α1,α2,, , αs线性表示

3.3线性相关和线性无关

线性相关
对于n维向量组 α1,α2,α3,…,αn,若存在一组不全为0的实数 k1,k2,…,kn,使得k1α1+k2α2+k3α3+···+knαn = 0 成立,则n维向量组α1,α2,···,αn是线性相关的。

线性无关
对于n维向量组 α1,α2,α3,…,αn,若不存在一组不全为0的实数k1,k2,…,kn,使得k1α1+k2α2+k3α3+···+knαn = 0 成立,则n维向量组α1,α2,···,αn是线性无关的。

4.线性方程组

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.特征值和特征向量

函数通常作用在数字上,比如函数f作用在x上,结果得到了f(x)。在线性代数中,我们将x扩展到多维,对于Ax来说,矩阵A的作用就像一个函数,输入一个向量x,通过A的作用,得到向量Ax。对多数向量x而言,经过Ax的转换后将得到不同方向的向量,但总有一些特殊的向量,它的方向和Ax方向相同,即Ax平行于x,这些特殊的向量就是特征向量。
在这里插入图片描述

6.二次型

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值