基于糖尿病数据集的岭回归分析

一、岭回归简介

岭回归(Ridge Regression),也称为Tikhonov正则化(Tikhonov Regularization),是一种专门用于处理多重共线性问题的线性回归改进算法。在多重共线性的情况下,数据矩阵可能不是满秩的,这意味着矩阵不可逆,因此不能直接使用普通最小二乘法来估计模型参数。岭回归通过在损失函数中添加一个正则化项(惩罚项)来解决这个问题。

岭回归的损失函数是残差平方和(RSS)与正则化项的和。残差平方和是模型预测值与实际值之差的平方和,而正则化项是模型参数的L2范数(平方和)。岭回归的损失函数可以表示为:

其中,n 是样本数量,m 是特征数量,yi 是第 i 个样本的目标值,xij是第 i 个样本的第 j 个特征值,θj 是第 j 个特征的权重,λ 是正则化参数,控制正则化项的强度。

糖尿病数据集回归分析通常用于预测患者的血糖水平、血压等指标,基于机器学习模型如线性回归、决策树或者神经网络。在Python中,我们可以使用Scikit-learn库来实现这个任务,并通过交叉验证(例如K折交叉验证)提高模型的泛化能力。以下是一个简单的例子,展示如何使用K-Fold对Pandas DataFrame加载的糖尿病数据进行五折交叉验证的线性回归: ```python import pandas as pd from sklearn import datasets from sklearn.model_selection import train_test_split, KFold from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 加载糖尿病数据集 diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建一个KFold实例 kfold = KFold(n_splits=5, shuffle=True, random_state=42) # 定义一个函数,用于执行回归并计算MSE def run_regression(model, X, y, kfold=kfold): mse_scores = [] for train_index, val_index in kfold.split(X): X_train_, y_train_ = X[train_index], y[train_index] X_val, y_val = X[val_index], y[val_index] model.fit(X_train_, y_train_) y_pred = model.predict(X_val) mse = mean_squared_error(y_val, y_pred) mse_scores.append(mse) return mse_scores # 实例化线性回归模型 lr = LinearRegression() # 执行5折交叉验证 mse_per_fold = run_regression(lr, X_train, y_train) # 计算平均MSE average_mse = sum(mse_per_fold) / len(mse_per_fold) print(f"Average Mean Squared Error across all folds: {average_mse}") #
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值