一、岭回归简介
岭回归(Ridge Regression),也称为Tikhonov正则化(Tikhonov Regularization),是一种专门用于处理多重共线性问题的线性回归改进算法。在多重共线性的情况下,数据矩阵可能不是满秩的,这意味着矩阵不可逆,因此不能直接使用普通最小二乘法来估计模型参数。岭回归通过在损失函数中添加一个正则化项(惩罚项)来解决这个问题。
岭回归的损失函数是残差平方和(RSS)与正则化项的和。残差平方和是模型预测值与实际值之差的平方和,而正则化项是模型参数的L2范数(平方和)。岭回归的损失函数可以表示为:
其中,n 是样本数量,m 是特征数量,yi 是第 i 个样本的目标值,xij 是第 i 个样本的第 j 个特征值,θj 是第 j 个特征的权重,λ 是正则化参数,控制正则化项的强度。