基于糖尿病数据集的岭回归分析

一、岭回归简介

岭回归(Ridge Regression),也称为Tikhonov正则化(Tikhonov Regularization),是一种专门用于处理多重共线性问题的线性回归改进算法。在多重共线性的情况下,数据矩阵可能不是满秩的,这意味着矩阵不可逆,因此不能直接使用普通最小二乘法来估计模型参数。岭回归通过在损失函数中添加一个正则化项(惩罚项)来解决这个问题。

岭回归的损失函数是残差平方和(RSS)与正则化项的和。残差平方和是模型预测值与实际值之差的平方和,而正则化项是模型参数的L2范数(平方和)。岭回归的损失函数可以表示为:

其中,n 是样本数量,m 是特征数量,yi 是第 i 个样本的目标值,xij是第 i 个样本的第 j 个特征值,θj 是第 j 个特征的权重,λ 是正则化参数,控制正则化项的强度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值