基于糖尿病数据集的Lasso回归分析

一、Lasso回归简介

Lasso回归(Least Absolute Shrinkage and Selection Operator,最小绝对收缩和选择算子回归)是一种在统计学和机器学习中广泛使用的线性模型正则化方法。它通过在损失函数中引入L1范数作为正则化项,有效地解决了多重共线性问题,促进了特征选择,并有助于提高模型的预测能力和解释性。

Lasso的核心思想是在回归系数的绝对值之和小于一个常数的约束条件下,使残差平方和最小化,从而能够产生某些严格等于0的回归系数,得到可以解释的模型。Lasso回归的优化目标函数可以表示为:

其中,w 代表特征权重向量,xi​ 和 yi​ 分别是第 i 个样本的特征向量和目标变量,n 是样本数量,λ 是正则化强度参数,控制着模型复杂度与拟合程度之间的权衡。

Lasso回归的优点包括:

  1. 自动特征选择:Lasso通过将特征权重压缩至零,自然地实现了特征选择,提升了模型的解释性和泛化能力。
  2. 对于稀疏数据和高维数据的处理能力强:即使在特征数量远大于样本数量的情况下,Lasso仍有可能获得较好的预测效果。

Lasso回归的缺点包括:

  1. 当特征之间高度相关时,Lasso可能会过度选择其中一个特征而忽略其他相关特征,即所谓的“群组效应”。
  2. Lasso的正则化参数λ需要通过交叉验证等方式谨慎选择,选择不当可能会影响模型性能。
  3. Lasso回归对异常值敏感,且无法处理非线性关系。

在实际应用中,Lasso回归已经广泛应用于金融风控、生物信息学、经济学等领域。例如,在金融领域,可以利用Lasso回归筛选出对贷款违约概率影响最大的少量关键特征,构建简洁且具有解释性的信用评分模型。

Lasso回归的实现可以通过Python的Scikit-Learn库中的Lasso类来进行。通过调整正则化强度参数alpha,可以控制模型的复杂度和特征选择的程度。通常,alpha值的选择需要通过交叉验证来确定最优值。

总的来说,Lasso回归是一种强大的正则化技术,在处理特征选择和高维数据分析方面发挥了重要作用。随着机器学习和统计学的不断发展,Lasso及其衍生算法将继续在理论研究和实际应用中发挥关键作用。

二、本项目简介

2.1项目方案介绍

(1)本项目通过将糖尿病数据集自动写入Excel文件并进行展示使数据进行Lasso回归分析的整个过程更加直接、清晰。

(2)本项目首先使用alpha默认值进行Lasso回归分析,输出回归系数和模型得分并通过散点图进行展示。

(3࿰

好的,我理解了你的要求。首先,糖尿病数据集是一个常用的回归数据集,可以用于训练和测试回归算法的效果。在本文中,我们将使用线性回归、RFE、LASSO 和 岭回归回归算法,并结合K折交叉验证方法对算法进行评估。 首先,我们需要导入必要的库和数据集: ```python import numpy as np import pandas as pd from sklearn import datasets from sklearn.model_selection import train_test_split, cross_val_score, KFold from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet from sklearn.feature_selection import RFE from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler # 导入糖尿病数据集 diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target ``` 接下来,我们将使用线性回归算法,并进行K折交叉验证: ```python # 创建一个线性回归模型 model_lr = LinearRegression() # 创建K折交叉验证器 kfold = KFold(n_splits=10, shuffle=True, random_state=42) # 对线性回归模型进行交叉验证 scores = cross_val_score(model_lr, X, y, cv=kfold, scoring='neg_mean_squared_error') # 打印交叉验证结果 print('线性回归:均方误差 = {:.2f}, 标准差 = {:.2f}'.format(scores.mean(), scores.std())) ``` 接下来,我们将使用RFE算法进行特征选择,并结合线性回归算法进行K折交叉验证: ```python # 创建RFE特征选择器 rfe = RFE(model_lr, n_features_to_select=5) # 创建一个包含RFE和线性回归的管道 model_rfe_lr = Pipeline([('rfe', rfe), ('lr', model_lr)]) # 对RFE和线性回归模型进行交叉验证 scores = cross_val_score(model_rfe_lr, X, y, cv=kfold, scoring='neg_mean_squared_error') # 打印交叉验证结果 print('RFE + 线性回归:均方误差 = {:.2f}, 标准差 = {:.2f}'.format(scores.mean(), scores.std())) ``` 接下来,我们将使用LASSO算法进行特征选择,并结合线性回归算法进行K折交叉验证: ```python # 创建LASSO算法 model_lasso = Lasso(alpha=0.1) # 创建一个包含LASSO和线性回归的管道 model_lasso_lr = Pipeline([('lasso', model_lasso), ('lr', model_lr)]) # 对LASSO和线性回归模型进行交叉验证 scores = cross_val_score(model_lasso_lr, X, y, cv=kfold, scoring='neg_mean_squared_error') # 打印交叉验证结果 print('LASSO + 线性回归:均方误差 = {:.2f}, 标准差 = {:.2f}'.format(scores.mean(), scores.std())) ``` 最后,我们将使用岭回归算法进行K折交叉验证: ```python # 创建岭回归算法 model_ridge = Ridge(alpha=0.1) # 对岭回归模型进行交叉验证 scores = cross_val_score(model_ridge, X, y, cv=kfold, scoring='neg_mean_squared_error') # 打印交叉验证结果 print('岭回归:均方误差 = {:.2f}, 标准差 = {:.2f}'.format(scores.mean(), scores.std())) ``` 至此,我们已经完成了糖尿病数据集回归算法建模与K折交叉验证。完整代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值