Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
解题思路:
思路跟62题一样,主要在循环的时候判断说,某个位置的值是否为1,如果是的话,就令到达该点的路径数为0。
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0)
return 1;
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[] num = new int[n+1];
num[1] = 1;
for(int i = 0;i<m;i++)
{
for(int j = 1;j<n+1;j++)
{
if(obstacleGrid[i][j-1] == 1)
num[j] = 0;
else
num[j] += num[j-1];
}
}
return num[n];
}
}