Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
//方法1:动态规划,使用二维数组
if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0){
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] paths = new int[m][n];
for (int i = 0; i < n; i++){
if (obstacleGrid[0][i] != 1){
paths[0][i] = 1;
} else{
break;
}
}
for (int j = 0; j < m; j++){
if (obstacleGrid[j][0] != 1){
paths[j][0] = 1;
} else {
break;
}
}
for (int i = 1; i < m; i++){
for (int j = 1; j < n; j++){
if (obstacleGrid[i][j] != 1){
paths[i][j] = paths[i-1][j] + paths[i][j-1];
} else {
paths[i][j] = 0;
}
}
}
return paths[m-1][n-1];
// //方法2:使用一维数组 同样是动态规划的思想
// if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0){
// return 0;
// }
// int[] res = new int[obstacleGrid[0].length];
// res[0] = 1;
// for (int i = 0; i < obstacleGrid.length; i++){
// for (int j = 0; j < obstacleGrid[0].length; j++){
// if (obstacleGrid[i][j] == 1){
// res[j] = 0;
// }
// else{
// if (j > 0)
// res[j] += res[j - 1];
// }
// }
// }
// return res[obstacleGrid[0].length - 1];
}
}