bzoj 1179[Apio2009]Atm (tarjan+spfa)

本文介绍了一种结合Tarjan算法与SPFA算法解决特定路径寻找问题的方法。通过Tarjan算法找到图中的强连通分量并进行压缩,之后使用SPFA算法计算最长路径。适用于寻找从指定起点到多个目标点的最优路径问题。
题目

输入

第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号

输出

输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。

样例输入

6 7
1 2
2 3
3 5
2 4
4 1
2 6
6 5
10
12
8
16
1
5
1 4
4
3
5
6
样例输出

47
提示

50%的输入保证N, M<=3000。所有的输入保证N, M<=500000。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。
View Code

 这道题我们需要用tarjan+spfa(用来跑最长路)

 首先要做的是把图上的点跑一边tarjan求出所有的强连通分量,把强连通分量上的点的父节点都设成该强连通分量的根

              //因为强连通分量上的点只要能到达一个就可以到达该强连通分量上的其它点,并且一条路可以走很多遍。

 再把所有强连通分量中的除了根以外的点上的值全部加到根上。

 然后将所有不在强连通分量中的点以及所有强连通分量的根为新的点,重新建图

 对新建的图进行spfa求最长路

 最后找出所有酒吧的父节点找出来,找出这些节点中到起点值最大的

              //因为强连通分量上的点只要能到达一个就可以到达该强连通分量上的其它点,并且一条路可以走很多遍。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int cnt, hh[510000], hhh[510000], stack[510000];
int dfn[510000], low[510000], num, ans, q, top, w[510000];
int father[510000], dd[510000], j, n, h, t, l[510000], z, x, y, m, s, p;
bool d[510000];
struct node
{
    int v, next;
};
node b[510000], ss[510000];
void add(int aa, int bb)//连边
{
    b[++cnt].v = bb;
    b[cnt].next = hh[aa];
    hh[aa] = cnt;
}
void addd(int aa, int bb)//连接新建图上的边
{
    ss[++cnt].v = bb;
    ss[cnt].next = hhh[aa];
    hhh[aa] = cnt;
}



void tarjan(int k)
{
    int i;
    dfn[k] = low[k] = ++num;
    stack[++top] = k;
    d[k] = true;
    for(i = hh[k]; i != 0; i = b[i].next)
    {
        int e = b[i].v;
        if(!dfn[e])
        {
            tarjan(e);
            low[k] = min(low[k], low[e]);
        }
        else if(d[e] == true)
        {
            low[k] = min(low[k], dfn[e]);
        }
    }
    if(dfn[k] == low[k])
    {
        d[k] = false;
        father[k] = k;
        while(stack[top] != k)
        {
            w[k] += w[stack[top]];
            father[stack[top]] = k;
            d[stack[top--]] = false;
        }
        top--;
    }

}
void rebuild()
{
    cnt = 0;
    int i;
    for(i = 1; i <= n; i++)
    {
        for(j = hh[i]; j != 0; j = b[j].next)
        {
            t = b[j].v;
            if(father[i] == father[t])continue;
            addd(father[i], father[t]);
        }
    }
}
void spfa()
{
    int i;
    q = s;
    memset(d, 0, sizeof(d));
    h = 0, t = 0;
    l[q] = w[q];
    d[q] = true;
    while(1)
    {
        if(h > t)break;

        for(i = hhh[q]; i != 0; i = ss[i].next)
        {
            z = ss[i].v;
            if(l[q] + w[z] > l[z])
            {
                l[z] = l[q] + w[z];
                if(d[z])continue;
                dd[++t] = z;
                d[z] = true;
            }
        }
        d[q] = false;
        q = dd[++h];
    }
}
int main()
{
    int i;
    scanf("%d %d", &n, &m);
    for(i = 1; i <= m; i++)
    {
        scanf("%d %d", &x, &y);
        add(x, y);
    }
    for(i = 1; i <= n; i++)
    {
        scanf("%d", &w[i]);
    }
    scanf("%d %d", &s, &p);
    for(j = 1; j <= n; j++)
    {
        if(!dfn[j])tarjan(j);
    }
    rebuild();//利用tarjan求出所有强连通分量

    s = father[s];//如果起点在一个强连通分量中,那么将起点换成该强连通分量的根
//因为强连通分量上的点只要能到达一个就可以到达该强连通分量上的其它点,并且一条路可以走很多遍。
//重要的事说三遍
spfa();//利用spfa求出最长路
for(i = 1; i <= p; i++) { scanf("%d", &q); ans = max(ans, l[father[q]]); } printf("%d", ans); return 0; }

 

 

 

 

内容概要:本文介绍了基于Matlab代码实现的【EI复现】考虑网络动态重构的分布式电源选址定容优化方法,重点研究在电力系统中结合网络动态重构技术进行分布式电源(如光伏、风电等)的最佳位置选择与容量配置的双层优化模型。该方法综合考虑配电网结构变化与电源布局之间的相互影响,通过优化算法实现系统损耗最小、电压稳定性提升及可再生能源消纳能力增强等多重目标。文中提供了完整的Matlab仿真代码与案例验证,便于复现实验结果并拓展应用于微网、储能配置与配电系统重构等相关领域。; 适合人群:电力系统、电气工程及其自动化等相关专业的研究生、科研人员及从事新能源规划与电网优化工作的工程师;具备一定Matlab编程基础和优化理论背景者更佳。; 使用场景及目标:①用于科研论文复现,特别是EI/SCI级别关于分布式能源优化配置的研究;②支【EI复现】考虑网络动态重构的分布式电源选址定容优化方法(Matlab代码实现)撑毕业设计、课题项目中的电源选址定容建模与仿真;③辅助实际电网规划中对分布式发电接入方案的评估与决策; 阅读建议:建议结合提供的网盘资源下载完整代码与工具包(如YALMIP),按照文档目录顺序逐步学习,注重模型构建思路与代码实现细节的对应关系,并尝试在不同测试系统上调试与扩展功能。
本系统采用SpringBoot与Vue技术架构,实现了完整的影院票务管理解决方案,包含后台数据库及全套可执行代码。该系统在高等院校计算机专业毕业设计评审中获得优异评价,特别适用于正在进行毕业课题研究的学生群体,以及需要提升项目实践能力的开发者。同时也可作为课程结业作业或学期综合训练项目使用。 系统提供完整的技术文档和经过全面测试的源代码,所有功能模块均通过多轮调试验证,保证系统稳定性和可执行性。该解决方案可直接应用于毕业设计答辩环节,其技术架构符合现代企业级开发规范,采用前后端分离模式,后端基于SpringBoot框架实现业务逻辑和数据处理,前端通过Vue.js构建用户交互界面。 系统核心功能涵盖影院管理、影片排期、座位预定、票务销售、用户管理等模块,实现了从影片上架到票务核销的完整业务流程。数据库设计遵循第三范式原则,确保数据一致性和完整性。代码结构采用分层架构设计,包含控制器层、服务层、数据访问层等标准组件,便于后续功能扩展和维护。 该项目不仅提供了可直接部署运行的完整程序,还包含详细的技术实现文档,帮助开发者深入理解系统架构设计理念和具体实现细节。对于计算机专业学生而言,通过研究该项目可以掌握企业级应用开发的全流程,包括需求分析、技术选型、系统设计和测试部署等关键环节。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值