偏序集-Dilworth定理

原创 2012年02月19日 18:09:47

偏序的概念:

设A是一个非空集,P是A上的一个关系,若关系P是自反的、反对称的、和传递的,则称P是集合A上的偏序关系。
即P适合下列条件:
(1)对任意的a∈A,(a,a)∈P;
(2)若(a,b)∈P且(b,a)∈P,则a=b;
(3)若(a,b)∈P,(b,c)∈P,则(a,c)∈P,则称P是A上的一个偏序关系。带偏序关系的集合A称为偏序集或半序集。
若P是A上的一个偏序关系,我们用a≤b来表示(a,b)∈P

比方说:(A,≤)是偏序集,A={1,2,3},偏序≤在A上的大于等于关系。则有:≤={<3,3>,<3,2>,<3,1>,<2,2>,<2,1>,<1,1>},则有3≤2,2≤2,2≤1....
举如下例子说明偏序关系:
1、实数集上的小于等于关系是一个偏序关系。
2、设S是集合,P(S)是S的所有子集构成的集合,定义P(S)中两个元素A≤B当且仅当A是B的子集,即A包含于B,则P(S)在这个关系下成为偏序集。
3、设N是正整数集,定义m≤n当且仅当m能整除n,不难验证这是一个偏序关系。注意它不同于N上的自然序关系。

 在Partially order set(偏序集)有一个非常NX的定理叫Dilworth Theorem。偏序集的定义是

偏序是在集合X上的二元关系≤(这只是个抽象符号,不是“小于或等于”),它满足自反性、反对称性和传递性。即,对于X中的任意元素a,b和c,有:
自反性:a≤a;
反对称性:如果a≤b且b≤a,则有a=b;
传递性:如果a≤b且b≤c,则a≤c 。

带有偏序关系的集合称为偏序集
令(X,≤)是一个偏序集,对于集合中的两个元素a、b,如果有a≤b或者b≤a,则称a和b是可比的,否则a和b不可比。

例:(A,≤)是偏序集,其中A={1,2,3,4,5},其中≤是整除关系,那么对任意的x∈p都有1≤x,所以1和1,2,3,4,5都是可比的,但是2不能整除3,且3不能整除2,所以2和3是不可比的。
       在X中,对于元素a,如果任意元素b,由b≤a得出b=a,则称a为极小元

一个反链A是X的一个子集,它的任意两个元素都不能进行比较。
       一个链C是X的一个子集,它的任意两个元素都可比。

下面是两个重要定理:
定理1 令(X,≤)是一个有限偏序集,并令r是其最大链的大小。则X可以被划分成r个但不能再少的反链。
其对偶定理称为
Dilworth定理:
定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。

证明:设p为最少反链个数
      (1)先证明X不能划分成小于r个反链。由于r是最大链C的大小,C中任两个元素都可比,因此C中任两个元素都不能属于同一反链。所以p>=r。
      (2)设X1=X,A1是X1中的极小元的集合。从X1中删除A1得到X2。注意到对于X2中任意元素a2,必存在X1中的元素a1,使得a1<=a2。令A2是X2中极小元的集合,从X2中删除A2得到X3……最终,会有一个Xk非空而X(k+1)为空。于是A1,A2,...,Ak就是X的反链的划分,同时存在链a1<=a2<=...<=ak,其中ai在Ai内。由于r是最长链大小,因此r>=k。由于X被划分成了k个反链,因此r>=k>=p。因此r=p,定理1得证。

搞清楚了反链和链的定义,就能够很好的从Hasse Diagram中得到理解。链就是从纵向的角度看 Hasse Diagram ,反链是从横向的角度看Hasse Diagram。

定理一,就是至少有r行构成反链关系。

定理二,就是至少有m列构成链关系。

题目总结:hdu 3335,poj 1065,1548,3636,nyist 255

题目链接:poj 2065http://poj.org/problem?id=1065

分析:有n个木棒,分别不同的长度和不同的重量,一个机器需要处理这些木棒,如果第i+1个木棒的重量和长度都>=第i个处理的木棒,那么将不会耗费时间,否则需要增加一个单位的时间,问最少需要多少时间处理完(包括机器启动的时间)。

先按照重量从小到大排序,当重量相等是再按长度从小到大排序,这个时候≤指的是xi+1>=xi&&yi+1>=yi,可以设num=0,因为排序后始终是xi+1>=xi,所以当yi+1<yi的时候就num++;结果返回num即可.

 

 

 

 

 

 

 

 

 

 

 

Dilworth定理

Dilworth定理优化“序列的不下降子序列最少划分数” 应kAc的要求,写这篇文章。虽然告别竞赛了,但是帮助晚辈,特别是有可能成为我孙子的人,还是十分有意义的。 首先是定义。 偏序关系是满...
  • u011676717
  • u011676717
  • 2013-09-20 10:47:25
  • 1190

学习笔记-Dilworth定理

Dilworth定理:我的理解就是,计算给出的一行数字中,连续下降的组数。 Dilworth定理(最小反链划分 == 最长链)可知最少的下降序列个数就等于整个序列最长上升子序列的长度 需要注意的是,...
  • Node_Su
  • Node_Su
  • 2017-03-25 23:08:03
  • 294

最长反链=最小链覆盖(证明+解析)

最长反链与最小链覆盖   转自:http://vfleaking.blog.163.com/blog/static/1748076342012918105514527/ 膜拜! 大前...
  • qq_34564984
  • qq_34564984
  • 2016-11-01 10:38:35
  • 1130

ZOJ 3795 Grouping 强联通缩点+拓扑序+偏序集的最大链的大小

题意:有n个人,m个关系,关系是这两个人前一个人可以跟后一个比较。 那么问你我最少分多少组可以使这个组里的人都不可以比较。 只会强联通缩点,真特么不知道怎么做,想了一个小时,网上一看,还要...
  • hitwhacmer1
  • hitwhacmer1
  • 2015-06-30 17:01:38
  • 648

【POJ1548】Robots Dilworth定理(偏序集定理2)

题意:     有一些位置有垃圾,让机器人从左上角开始走,只能往右或者往下,问最少走多少次可以清理完所有垃圾、 题解:     一看就是网络流经典题,或者说是二分图—最小路径覆盖;但是现在毕竟是在做一...
  • Vmurder
  • Vmurder
  • 2014-11-05 09:47:19
  • 1521

poj 3636 Dilworth定理(嵌套方形娃娃) Dilworth定理详细讲解

题意: 思路:
  • dumeichen
  • dumeichen
  • 2014-10-24 13:52:22
  • 595

离散数学 求偏序集中的极大元与极小元

输入 输入偏序集 £>,A中的元素数不超过20个,分别用单个小写的英文字母表示。 输入的第一行给出A中的各个元素,两个相邻的元素之间用逗号隔开。 输入的第二行给出偏序关系£,用有序对的形式给出,...
  • DaDaMr_X
  • DaDaMr_X
  • 2016-05-19 12:39:20
  • 3105

【离散数学】偏序关系与全序关系的区别、解释(偏序集合、全序集合)

偏序关系、全序关系都是公理集合论中的一种二元关系。 偏序集合:配备了偏序关系的集合。 全序集合:配备了全序关系的集合。 偏序:集合内只有部分元素之间在这个关系下是可以比较的。 比如:比如复...
  • liuchuo
  • liuchuo
  • 2016-07-21 20:07:16
  • 10826

哈斯图的画法,以及利用哈斯图寻找极大元之类

哈斯图的画法要确定层数。也就是谁在上,谁在下。我在看过这个文章偏序集的哈斯图的画法之后结合书上的一些定义进行总结:(恒等关系在哈斯图上体现不出来就不说了。) 1.先把没有出现在值域的元素放在第一排。如...
  • Genius_pig
  • Genius_pig
  • 2017-06-02 12:00:28
  • 8438

短语、句柄、素短语、最左素短语

很久没写博客了=== 今天写一发=== 关于编译原理 语法树 句柄 简单短语 短语 的区分,通过两个例子来理解概念以及方法: 例子1——语法树 S -> a|b|(T)  ...
  • u011954647
  • u011954647
  • 2015-04-07 21:31:39
  • 6689
收藏助手
不良信息举报
您举报文章:偏序集-Dilworth定理
举报原因:
原因补充:

(最多只允许输入30个字)