TCO14 1C L3: RedPaint,dp,math

题目:http://community.topcoder.com/stat?c=problem_statement&pm=13063&rd=15958

想到O(N^3)的算法不难,空间上可以优化为O(N^2),因为k状态只与k-1状态有关,后来在这里发现利用期望的线性性质可以得到O(N^2)的算法,进而可以观察出答案是有规律可循的,得到O(N)算法,确实还需要多思考。

代码:

#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <iostream>
#include <sstream>
#include <iomanip>

#include <bitset>
#include <string>
#include <vector>
#include <stack>
#include <deque>
#include <queue>
#include <set>
#include <map>

#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <climits>
using namespace std;

#define CHECKTIME() printf("%.2lf\n", (double)clock() / CLOCKS_PER_SEC)
typedef pair<int, int> pii;
typedef long long llong;
typedef pair<llong, llong> pll;
#define mkp make_pair

/*************** Program Begin **********************/
const int MAX_N = 500;
double dp[MAX_N + 1][MAX_N / 2 + 1][MAX_N / 2 + 1];
class RedPaint {
public:
	int N;
	double rec(int k, int L, int R)
	{
		// 当前位置左边有L个cells已经painted, 右边R个,还可以走k步
		// 返回此种情况下还可以paint多少个新的cells

		if (k == 0) {
			return 0;
		}
		double & res = dp[k][L][R];
		if (res > -0.5) {
			return res;
		}
		res = 0;
		res += 1.0 / 2 * rec(k - 1, max(0, L - 1), min(MAX_N / 2, R + 1))
		     + 1.0 / 2 * rec(k - 1, min(MAX_N / 2, L + 1), max(0, R - 1));
		if (0 == L) {
			res += 0.5;
		}
		if (0 == R) {
			res += 0.5;
		}
		return res;
	}
	double expectedCells(int N) {
		this->N = N;
		for (int i = 0; i < MAX_N + 1; i++) {
			for (int j = 0; j < MAX_N / 2 + 1; j++) {
				for (int k = 0; k < MAX_N / 2 + 1; k++) {
					dp[i][j][k] = -1;
				}
			}
		}

		return 1 + rec(N, 0, 0);
	}

};

/************** Program End ************************/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值