583. Delete Operation for Two Strings
题目链接:583. Delete Operation for Two Strings
思路链接:代码随想录动态规划-两个字符串的删除操作
思路
确定递推公式时,当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
Code
class Solution {
public int minDistance(String word1, String word2) {
// 1. 确定dp数组
// 以i - 1为结尾的字符串word1,和以j - 1为结尾的字符串word2,想要达到相等,最少需要减去dp[i][j]的个数
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
// 2. 递推公式
// 1. 当word1[i - 1]与word2[j - 1]不相同时
// 1.1 删word1[i - 1]: dp[i - 1][j] + 1;
// 1.2 删word2[j - 1]: dp[i][j - 1] + 1;
// 1.3 删word1[i - 1]和word2[j - 1]: dp[i - 1][j - 1] + 2;
// -->> dp[i][j] = Math.min(dp[i - 1][j - 1] + 2, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
// 2. 当word1[i - 1]与word2[j - 1]相同时
// dp[i][j] = dp[i - 1][j - 1] + 1;
// 3. 数组初始化
for (int i = 0; i <= word1.length(); i++) {
dp[i][0] = i;
}
for (int j = 0; j <= word2.length(); j++) {
dp[0][j] = j;
}
// 4. 遍历顺序
for (int i = 1; i <= word1.length(); i++) {
for (int j = 1; j <= word2.length(); j++) {
if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
dp[i][j] = Math.min(dp[i - 1][j - 1] + 2, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
} else {
dp[i][j] = dp[i - 1][j - 1];
}
}
// 5. 打印数组
// for (int[] row : dp) {
// for (int item : row) {
// System.out.print(item + " ");
// }
// System.out.println();
// }
// System.out.println();
}
return dp[word1.length()][word2.length()];
}
}
class Solution {
public int minDistance(String word1, String word2) {
// 动态规划方法2: 找出最大的重复序列长度
// 1. 确定dp数组
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
// 2. 递推公式
// if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
// dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
// } else {
// dp[i][j] = dp[i - 1][j - 1] + 1;
// }
// 3. 初始化数组: 都是0
// 4. 遍历顺序
for (int i = 1; i <= word1.length(); i++) {
for (int j = 1; j <= word2.length(); j++) {
if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
} else {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
}
// 5. 打印数组
// for (int[] row : dp) {
// for (int item : row) {
// System.out.print(item + " ");
// }
// System.out.println();
// }
// System.out.println();
}
return word1.length() + word2.length() - 2 * dp[word1.length()][word2.length()];
}
}
72. Edit Distance
题目链接:72. Edit Distance
思路链接:代码随想录动态规划-编辑距离
思路
学会删除操作,注意这里增加操作和删除操作是等价的,因此可以合并起来
Code
class Solution {
public int minDistance(String word1, String word2) {
// 1. 确定dp数组
// 以word1[i - 1]为结尾的word1,和以word2[j - 1]为结尾的word2,变成相同最少需要进行的操作次数为dp[i][j]
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
// 2. 递推公式
// if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
// 删和增是等价的,其中一个增相当于另外一个删
// word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
// dp[i - 1][j] + 1
// word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
// dp[i][j - 1] + 1
// 替换
// dp[i - 1][j - 1] + 1
// -->> dp[i][j] = Math.min(dp[i - 1][j - 1] + 1, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
// } else {
// 相等就不用操作
// dp[i][j] = dp[i - 1][j - 1];
// }
// 3. 初始化数组
for (int i = 0; i <= word1.length(); i++) {
dp[i][0] = i;
}
for (int j = 0; j <= word2.length(); j++) {
dp[0][j] = j;
}
// 4. 遍历顺序
for (int i = 1; i <= word1.length(); i++) {
for (int j = 1; j <= word2.length(); j++) {
if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
dp[i][j] = Math.min(dp[i - 1][j - 1] + 1, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
} else {
dp[i][j] = dp[i - 1][j - 1];
}
}
// 5. 打印数组
// for (int[] row : dp) {
// for (int item : row) {
// System.out.print(item + " ");
// }
// System.out.println();
// }
// System.out.println();
}
return dp[word1.length()][word2.length()];
}
}