BOW模型理解

Bag of Word(BOW)模型是一种文本表示方法,常用于文本分类和图像识别。它忽略了词序和语法,将文档视为词汇的集合,通过统计词汇出现的频率来表征文档。在视觉领域,BOW模型结合SIFT特征进行图像分类,包括创建词汇词典、映射训练样本、训练分类器和识别新样本四个步骤。通常使用k-均值聚类创建词典,并采用SVM作为分类器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bag of word 模型简介

Bag of word模型最初被用在文本分类中, 将文档表示成特征矢量。它的基本思想是假定对于一个文本,忽略其词序和语法、句法,仅仅将其看做是一些词汇的集合,而文本的每个词汇都是独立的。
简单说就是将每个文档看成一个袋子,然后看每个袋子里装的都是些什么词汇,将其分类。通过统计文档中各个此出现的次数判断该文档在描述什么。例如,一个中如果猪、牛、马、羊、山谷、土地、拖拉机这样的词汇多,而银行、大厦、汽车、公园这样的词汇少,就可以断定该文档描述的乡村的场景,而不是城镇。
BOW也可以应用在视觉领域的图像分类中,其基本思想就是将图像的特征看成一个特征集合,通过统计图像中特征出现的次数来对图像进行分类。这里以SIFT特征为例来理解如何利用BOW对图像进行分类。

BOW实现步骤:

  • 1.创建词汇(特征)词典
  • 2.得到训练数据到字典的映射
  • 3.选择适当的分类器进行训练
  • 4.对新来的样本,先映射到字典空间,然后利用得到的分类器进行分类

1.创建词汇(特征)词典

以SIFT 128维特征作为例子。例如现在有1000张训练图片,对每一张训练图片都提取SIFT的128维特征,那么最终可以得到N(i)*128的特征,N(i)代表第i张图特征点的个数,因为每张图像不一样,所以每张图像的SIFT 特征个数也不一样。提取特征后对1000张图像提取出的所有SIFT特征进行聚类(目的是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值