运筹学总结——田忌赛马哲学

本文通过田忌赛马的故事引入运筹学的概念,讲述了如何运用数学手段进行有效决策。在赛马的例子中,通过观察、分析、建模和迭代找到最优策略,最终赢得比赛。运筹学是预测和决策的科学,它在我们的生活中无处不在,管理好自己就是运筹帷幄的重要一步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    我相信,绝大多数人都听过田忌赛2马的故事,讲述的是一个人通过自己的智慧帮助原本处劣势或者平等的一方获得一场马匹比赛的胜利,让我们回顾下这个有意思的故事

    

    齐国使者到大梁来,孙膑以刑徒的身份秘密拜见,劝说齐国使者。齐国使者觉得此人是个奇人,就偷偷地把他载回齐国。齐国将军田忌非常赏识他,并且待如上宾。田忌经常与齐国众公子赛马,设重金赌注。孙膑发现他们的马脚力都差不多,马分为上、中、下三等,于是对田忌说:“您只管下大赌注,我能让您取胜。”田忌相信并答应了他,与齐王和诸公子用千金来赌注。比赛即将开始,孙膑说:“现在用您的下等马对付他们的上等马,拿您的上等马对付他们的中等马,拿您的中等马对付他们的下等马。”已经比了三场比赛,田忌一场败而两场胜,最终赢得齐王的千金赌注。于是田忌把孙膑推荐给齐威王。齐威王向他请教兵法,并请他当作军师!


引子

    

    在这里,我们引入一个词,运筹学,孙膑这次赛马恰恰是运筹学的一个很好的教案!

    首先,我们看看网络对于运筹学的定义:


    百度百科:运筹学(Operations Research,在台湾有时又被称作作业研究),是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。


    简单总结为:用数学手段找出最佳答案,但是,出乎意料的是,书籍对于运筹学的定义竟然如此简单,是有效组织管理人机系统的科学! 结合者两者,我总结为一句话,用数学手段有效组织管理某系统的科学!


田忌赛马问题可以用矩阵博弈的方式来求解。假设田忌和齐王各有n匹马,马的速度不一样,田忌和齐王都知道各自马的速度,但不知道对方马的速度。现在要进行一场比赛,规则是田忌和齐王每次各选出一匹马进行比赛,速度快的获胜。每场比赛赢一分,平局不得分,输了不得分。比赛进行n场,求田忌最多能得多少分。 矩阵博弈的思路是构造一个n*n的矩阵,第i行第j列表示田忌用第i匹马与齐王用第j匹马比赛的得分。例如,第一行表示田忌用自己最快的马与齐王用不同的马比赛的得分,第二行表示田忌用自己第二快的马与齐王用不同的马比赛的得分,以此类推。 根据题意,构造比赛得分矩阵的方法如下: 1. 田忌用最快的马与齐王用最慢的马比赛,得分为1; 2. 田忌用第二快的马与齐王用第二慢的马比赛,得分为1; 3. 田忌用最慢的马与齐王用最快的马比赛,得分为0或-1。 注意,第三种情况得分为0或-1,是因为如果田忌用最慢的马与齐王用最快的马比赛,那么田忌必输,得分为-1;如果田忌用最慢的马与齐王用次慢的马比赛,那么田忌可能赢,得分为0或1。 根据上述方法可以构造比赛得分矩阵,然后使用线性规划的方法求解矩阵博弈问题。具体来说,可以将田忌和齐王的得分视为两个向量,将比赛得分矩阵视为一个矩阵,然后使用线性规划求解最大值问题。 以下是Matlab程序实现: ```matlab % 田忌赛马问题的矩阵博弈求解 n = 5; % 马匹数量 speeds = randperm(10, n); % 马的速度,随机生成 score_mat = zeros(n, n); % 得分矩阵 for i = 1:n for j = 1:n if i == j % 同一匹马不能比赛 continue; end if speeds(i) > speeds(j) % 田忌胜 score_mat(i, j) = 1; else % 田忌败 score_mat(i, j) = -1; end end end f = -ones(n, 1); % 目标函数 A = score_mat'; % 约束条件矩阵 b = ones(n, 1); % 约束条件向量 lb = zeros(n, 1); % 变量下界 ub = ones(n, 1); % 变量上界 options = optimset('Display', 'off'); % 不显示求解过程 x = linprog(f, A, b, [], [], lb, ub, options); % 求解线性规划问题 max_score = -sum(x); % 最大得分 disp(['田忌最多能得' num2str(max_score) '分']); ``` 该程序首先随机生成马的速度,然后根据上述方法构造比赛得分矩阵,最后使用Matlab内置函数linprog求解线性规划问题,得到田忌最多能得多少分。
评论 38
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值