大数据开发岗位面试经验总结(一线、二线,独角兽,外企,外国企业)

为什么想走?

跟很多人也许不同,我这里并不是待遇问题,反而认为现在公司在互联网公司中的待遇算一股清流了:额外家属子女商业保险、总包17薪、出国团建、加班少、工作氛围愉快,没有所谓大公司政治斗争,这些对于我毕业第一份工作已经非常满意。之所以决定离开,主要源于个人成长已经缓慢,而内心想逃出舒适区,于是去看新的机会。

整个面试差不多持续1个半月,从刚开始懵懵懂懂准备不充分,到后来渐渐从容面对,从面试中能接触不同的人聊大数据领域技术,收获很大,下面分享出来,希望能帮助更多人,让面试和职业选择更顺利。

面试了哪些公司?

算下来有14家,主要分为未上市互联网企业(分为独角兽和二线),上市互联网企业(分为一线和非一线)、外企和国外startup企业。有人可能觉得面的好多,而且范围多样,其实我的想法很简单:多跟不同公司背景的人聊应该会很有意思。

具体公司包括:

  • 未上市互联网企业:小红书、商汤科技、快手、头条、美团、知乎、一点资讯
  • 上市互联网企业:阿里妈妈、阿里云、腾讯社交广告
  • 国内外企: freewheel、微软
  • 国外企业:Sentiance、getyourguide

面试具体过程

流程方面这里主要描述面试过程和大致内容,每个面试都主要问简历上内容,此外面试部门小组不同,实际会有一定差异,个人经历仅供参考。

未上市互联网企业
  • 小红书
    技术面两轮,HR一轮。
    技术面主要问项目,没有算法考察,HR聊工作意向,不得不说HR很nice。北京分公司刚开始拓展,主要力量在上海,北京这边刚开始搭建数据方面系统,从头开始构建一个闭环。处于快速发展阶段,目前基本从0开始,发展空间大。个人认为小红书作为社区电商潜力很大,工作氛围也很棒,HR姐姐工作认真负责,很耐心回答各种问题。

  • 商汤科技
    技术面三轮,HR一轮。
    技术面问了java IO、多线程、线程池用过哪些, gc机制,资源容器化,kerberous等。考察了一个算法题:对一个大数组求任意两个下表之间数的和。HR聊的不多,就问了下期望,个人认为商汤的HR专业性需要加强。商汤在大数据方面对图片,视频数据处理更多,主要用GPU集群,使用spark调用c++的包执行算法操作,广告业务使用spark streaming较多。最后HR聊offer,现金部分很给力。

  • 快手
    三轮技术面,持续3-4h
    每一面都有聊项目问题,然后开始算法题,每轮有2道题,涉及dp、回溯、数学方面,对算法题考察非常多。其次还考察jvm,多并发,gc问题。快手的办公地点在五道口有两个,容易找不到。刷题多的人应该容易拿快手offer。

  • 头条
    三轮技术面,一轮HR面,时间持续4-5h。
    第一、二轮考察项目工作后问算法题,难度适中,第三轮考察系统设计,最后HR聊offer和薪水情况。HR很nice,看我面试一天没来得及吃东西特地给拿了饼干,很暖心。

  • 美团
    两轮技术面,两轮HR
    技术面主要问基础,dp算法,项目,HR比较专业,问的很细很广泛,包括意向,对美团的看法等等。最后一轮HR沟通offer内容,不得不说HR很棒,前前后后等我一个多月,愿意各种解答疑惑,真的很棒!

  • 知乎
    技术面四轮,HR一轮
    技术面前两轮考察项目经历,树相关算法,第三轮面试官兴哥非常nice,考察系统设计如LRU结构设计,聊了很多架构相关,第四轮是总监,人也很棒,很耐心的交流很多问题,开放自由的思考。个人对知乎的人和技术很认可,但对于HR后期聊offer以及沟通方面,希望能符合知乎的风格更专业一些。

  • 一点资讯
    技术面三轮,前两轮考察项目和算法,算法是经典dp和链表翻转,第三轮主要交流项目和一点的工作情况。HR是最后直接打电话沟通offer。不得不说一点资讯的现金和期权部分很给力。

上市互联网企业
  • 阿里妈妈
    阿里妈妈,不得不说持续时间真的很长,大概1个月左右流程才走完。
    总共6面,一共4轮技术面和两轮HR面,其中HR面试在第二轮技术面之后和第四轮之后。技术面重点考察项目内容,问题解决思路,对算法考察要求相对没那么高,但对问题解决能力要求很高。第三面P8,第四面P9,考察项目内容背景,项目难点是如何解决等。HR第一轮考察求职原因,发展规划,个人经历,最后一轮HR面试直接聊最终offer。HR也的确如外界所说,很强势。

  • 阿里云
    考察项目经历,对项目中spark,sql方面考察比较多,此外基础方面考察计算机原理、数据结构、算法、JVM、通信,考察比较全面。但是因为不能同时两个部门走流程,简历已经被妈妈那边锁定,就考虑继续走阿里妈妈这边流程。

  • 腾讯社交广告
    挺巧合的,面试官是某技术交流群群主,群里有过聊天,因为都做spark方面,聊了很多相关内容,此外还考察简单的算法题,交流一些社交广告这边数据的工作情况。

国内外企
  • freewheel
    共五轮面试,持续5h,两轮技术面,第三轮people manager面,第四轮vp面试。第五轮HR面。面试官很nice,技术面主要聊项目内容,系统设计,出了一个设计题目:如何求出两个文件的diff。 第二轮技术面针对项目内容提出设计问题,很开放有意思。 people manager 主要问求职原因,发展规划。VP面试聊工作意向,最后HR面聊offer情况。公司工作氛围很好,接触到的每个工作人员都很棒。待遇中除了工资还有现金股票,假期非常可观及人性化,一直是我很喜欢的公司。

  • 微软
    共五轮面试,3轮技术,一轮老大,最后HR。
    这个岗位是Data & AI technical consultant。 HR在linkedin找到我投递的。整体上这个岗位更看重技能广度、交流沟通能力和学习能力。每个面试官都很棒,很喜欢这种开放自由的环境,中关村微软亚研总部工作环境简直不能更赞,大老板工作20年,非常资深,交流中也非常nice。HR最后直接沟通offer情况,待遇包括各种补贴(健身、交通、通讯、饭),还有股票bonus,说实话个人非常喜欢微软这样外企风格。

国外startup
  • Sentiance
    这家公司总部在欧洲中心比利时,欧盟所在地,公司主要做移动手机信息和物联信息收集,在全球有多个办公室的startup。HR从linkedin联系到我,然后通过skype进行了初步意向沟通,技术面问技术栈较多,如aws云、容器、监控运维框架和大数据知识等,全英文面试,聊天过程很棒。

  • getyourguide
    公司总部在德国柏林,是一家旅游网站,类似国内的马蜂窝。主要也是HR工作意向面试,技术面,主要问aws、容器,大数据组件和写代码注意的细节等等。全英文,挺有意思的,不得不说德国口音英语跟标准英语还是不同的。

总结

通过一个月以来的面试,对于好奇心强的我,看到很多新鲜的东西,了解到不同公司的大数据相关技术情况。面试除了技术因素,很多真的看缘分,过程中遇到很多心仪的公司和人,获得很多不错的工作机会。与其说面试就是找更好机会,不如说面试是对最过去的总结,是对自己认知的加深,是思考能力的跃迁。最后,很感谢那些给我面试机会的人和事,也祝愿看到这篇文章的同学找到心仪的工作。

补充

对于offer的选择我曾咨询多人,加上自己的体会总结如下:

  • 方向 > 努力 (坐飞机再怎么不会比火车慢)
  • 技能的获得 > 公司背景 (中小公司核心部门核心工作比大公司边缘部门好)
  • 领导和团队 > 待遇(并不是说待遇不重要,但伯乐难寻,但若有一个好的伯乐带路,长远发展的待遇不会差)

看到这里,可能还有更多关于新手入门、转行、进一步提升和面试的困惑,可以看这里《小白转行大数据的思考》

对于创业公司、中小公司和BAT大厂的选择,可以参考《毕业三年工作小结》,说不定对最后选择有所启发。

(完)

PS: 校招季又到了,这里有阿里2020届校招和工作1年以上社招内推机会,有各种岗位。

关注公众号我们可以更方便沟通交流:水木之椿

本教程为授权出品 一、课程简介 数据仓库(Data Warehouse,可简写为DW或DWH),是面向分析的集成化数据环境,为企业决策制定过程,提供系统数据支持的战略集合,是国内外各大公司正在重点投入的战略级技术领域。 二、课程内容 《大数据电商数仓项目实战》视频教程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。 三、课程目标 本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。 四、课程亮点 本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
一、课程简介 随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。 二、课程内容 本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。 三、课程目标 本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。 四、课程亮点 本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页