汉诺塔-递归

本文介绍了汉诺塔问题及其背后蕴含的递归思维。汉诺塔是一个源自印度古老传说的益智游戏,涉及将64片黄金圆盘从一根柱子移动到另一根柱子,递归是解决问题的关键。通过分解大问题为小问题,逐步解决,最终实现整个汉诺塔的移动。文章还探讨了递归的概念,包括前进段、结束段和返回段,并举例说明如何使用递归解决汉诺塔问题。最后,简要提到了递归与分治法的关系以及递归在解决问题时的优势。
摘要由CSDN通过智能技术生成

今天,我来说一下,汉诺塔,感谢你的阅读,一点见解,希望补充。

那什么是汉诺塔呢?

汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。传说中,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
这就是汉诺塔的基本内容,汉诺塔经过计算,如果要完成移动,一秒移动一块,需要18446744073709551615秒,可能你乍一看,可能看不出来这个数字他到底有多大,我给你换算成年,大约就是5845.54亿年以上,这么一看,你就知道这个短短64层蕴含了多少心血。

汉诺塔的运算思维

汉诺塔,经常被运用在我们的各种算法中,经常会出现一些题目,里面就是汉诺塔。
在这里插入图片描述
这是一个汉诺塔的小型图解,只有三层,但是已经能说明这个问题了。
我解汉诺塔其实用了一下递归的思想。

什么是递归呢?

递归递归,分开解释就是先递后归。递归的体现就是函数自身调用函数自身。
他主要讲的就是把一个大问题,不断化小,化小,再化小,直到能直接运算的那一步。
递归主要分三部分

  • 前进段
    指的就是讲问题从大化小
  • 结束段
    问题无法再继续化小,则处理当前的问题
  • 返回段
    将小问题处理完毕之后,向上返回(有些问题是不需要返回的)

一般而言,但凡能够被迭代(循环)解决的问题,递归都可以,而递归解决的问题,迭代就不一定了

递归其实是分治法的一种实现方式(一种实现思路)
递归就是函数在进栈,进栈的次数多了,势必会占内存,这个是无法避免的,但是在某些问题上,递归所写的代码要比迭代写的代码少,还有一些问题上,迭代是写不出来的,所以只能用递归。
分治法是一种算法思想,就是一种暴力破解法(穷举),也是一种搜索最优答案的算法。

说了这

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值