19、TLS 中 RSA 加密的安全性分析

TLS 中 RSA 加密的安全性分析

1. 基础函数与加密操作

在 TLS 中,涉及到多个重要的基础函数,其中 $\Omega(w, \sigma, l) = g(w_L, \sigma, l) \oplus h(w_R, \sigma, l)$,这里的 $g$ 和 $h$ 分别是基于 MD5 和 SHA - 1 的 HMAC 伪随机函数。此构造的目的是,即便其中一个底层伪随机函数较弱,也能保证一定的安全性。

函数 $\Delta$ 输出的是从输入随机数、标签和密文派生的字符串的 SHA - 1 哈希值和 MD5 哈希值的拼接。不过,后续的结果并不依赖于 $\Delta$ 函数。

设 RSA - P1 为指定的加密方案,$N$ 是 RSA 模数,$e$ 是 RSA 公钥指数,定义 $f(x) = x^e \bmod N$。在 TKEM1 的符号体系下,固定 $R = B_{384}$,$k_t = k_r = 384$,$k_z = 96$,而 $k_s$ 取决于所选的密码套件。

TKEM2 加密操作需要一个 16 位的版本号 $v$,为简化,假设版本号固定。随机数 $\rho$ 是两个 32 字节字符串 $\rho_1$ 和 $\rho_2$ 的拼接(分别由客户端和服务器提供),前 4 字节表示自 1970 年 1 月 1 日以来的秒数,其余随机生成。TKEM2 加密操作流程如下:

TKEM2 - Encrypt(ρ, L)
– r0 ← v ∈ {0, 1}^{16}; r1 ←R {0, 1}^{k_r - 16}; r = r0∥r1;
– y ← RSA - P1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值