TLS 中 RSA 加密的安全性分析
1. 基础函数与加密操作
在 TLS 中,涉及到多个重要的基础函数,其中 $\Omega(w, \sigma, l) = g(w_L, \sigma, l) \oplus h(w_R, \sigma, l)$,这里的 $g$ 和 $h$ 分别是基于 MD5 和 SHA - 1 的 HMAC 伪随机函数。此构造的目的是,即便其中一个底层伪随机函数较弱,也能保证一定的安全性。
函数 $\Delta$ 输出的是从输入随机数、标签和密文派生的字符串的 SHA - 1 哈希值和 MD5 哈希值的拼接。不过,后续的结果并不依赖于 $\Delta$ 函数。
设 RSA - P1 为指定的加密方案,$N$ 是 RSA 模数,$e$ 是 RSA 公钥指数,定义 $f(x) = x^e \bmod N$。在 TKEM1 的符号体系下,固定 $R = B_{384}$,$k_t = k_r = 384$,$k_z = 96$,而 $k_s$ 取决于所选的密码套件。
TKEM2 加密操作需要一个 16 位的版本号 $v$,为简化,假设版本号固定。随机数 $\rho$ 是两个 32 字节字符串 $\rho_1$ 和 $\rho_2$ 的拼接(分别由客户端和服务器提供),前 4 字节表示自 1970 年 1 月 1 日以来的秒数,其余随机生成。TKEM2 加密操作流程如下:
TKEM2 - Encrypt(ρ, L)
– r0 ← v ∈ {0, 1}^{16}; r1 ←R {0, 1}^{k_r - 16}; r = r0∥r1;
– y ← RSA - P1
超级会员免费看
订阅专栏 解锁全文
17

被折叠的 条评论
为什么被折叠?



