80、基于DH - DDH分离的唯一签名与可验证随机函数

基于DH - DDH分离的唯一签名与可验证随机函数

1. 利用高效关系证明降低复杂度

在密码学协议中,高效证明承诺值之间的关系可以用一种不同的方式来降低通信复杂度和轮次复杂度。具体操作步骤如下:
1. 各方就关系的布尔电路达成一致。
2. 证明者逐位对见证值以及电路在见证值和实例上的评估结果进行承诺。
3. 证明者为电路中的每个门证明所承诺的值与该门是一致的。
4. 打开对输出门的承诺,证明者将揭示的值作为其输出。

该协议本身没有消息交互,所有交互都通过理想承诺功能 $F_{HCOM}$ 完成。设使用的门的大小为 $l$,此协议需要 $O(l)$ 个单比特承诺,每个承诺需要 $O(k)$ 比特的通信量;还需要进行 $O(l)$ 次关系证明,每次证明也需要 $O(k)$ 比特的通信量。因此,总的通信量为 $O(lk)$ 比特,相较于使用其他方案时的 $O(lkt)$ 比特,在通信复杂度上有了 $O(t)$ 倍的提升。

2. 唯一签名与可验证随机函数概述

2.1 签名方案的发展与需求

签名方案是密码学中最重要的对象之一,与公钥密码学一同被发明。最初,Diffie和Hellman开创了公钥密码学领域,随后Rivest、Shamir和Adleman提出了第一个候选签名方案。Goldwasser、Micali和Rivest给出了第一个即使在对手可以选择消息获取签名的情况下仍然安全的签名方案,这种安全性定义被称为GMR安全性。

如今,一个理想的签名方案除了要满足GMR安全性定义外,还应具备以下两个额外属性:
1. 在纯模型中安全,即无需随机预言机或公共参数。
2.

内容概要:本文介绍了基于Hartree-Fock方法X-α泛函密度泛函理论的分子体系量子化学计算研究,并提供了相应的Matlab代码实现。研究聚焦于量子化学中电子结构计算的核心问题,通过自洽场迭代求解分子体系的基态能量电子分布,结合Hartree-Fock近似X-α经验交换泛函方法,简化计算复杂度的同时保持一定的物理准确性。文中详细阐述了算法原理、数学模型构建、数值求解流程及关键步骤的编程实现,适用于中小分子体系的能级结构分析,是理论化学计算物理交叉领域的重要实践。; 适合人群:基于Hartree-FockX-α泛函密度泛函理论的分子体系量子化学计算研究(Matlab代码实现)具备量子力学基础、计算化学或计算物理背景,熟悉Matlab编程的研究生、科研人员及高年级本科生。; 使用场景及目标:①理解Hartree-Fock方法密度泛函理论的基本原理及其在分子体系中的应用;②掌握量子化学计算中自洽场迭代、哈密顿矩阵构造对角化的数值实现方法;③通过Matlab代码动手实现分子能量计算,辅助教学演示或科研原型开发。; 阅读建议:建议读者结合量子化学教材同步学习,重点关注算法实现物理模型之间的对应关系,调试代码时逐步验证各模块输出,如基函数选择、重叠积分、Fock矩阵构建等,确保计算结果的合理性。
内容概要:本文围绕“具有梯度流的一类系统的扩散映射卡尔曼滤波器研究”展开,重点探讨了在存在模型不确定性的情况下,如何利用扩散映射卡尔曼滤波相结合的方法提升对复杂动态系统的状态估计精度。文中提出了一种结合梯度流机制的改进型卡尔曼滤波器,通过引入扩散映射技术对非线性系统进行局部线性化处理,从而增强滤波器在高噪声或混沌系统中的鲁棒性预测能力。研究以Matlab代码实现为核心,提供了完整的【卡尔曼滤波】具有梯度流的一类系统的扩散映射卡尔曼滤波器研究(Matlab代码实现)算法仿真流程,涵盖系统建模、滤波器设计、数值实验性能对比分析,尤其强调在可预测性较高的混沌系统阶段,该方法展现出良好的预测效果。此外,文档还附带多个相关科研方向的技术案例代码资源,形成一个多领域交叉的科研辅助资料集合。; 适合人群:具备一定控制理论、信号处理或系统辨识基础,熟悉Matlab编程,从事自动化、电子信息、航空航天、机器人或相关工程领域研究的研究生、科研人员及工程师。; 使用场景及目标:①用于非线性动态系统的状态估计预测,特别是在模型不精确或存在外部扰动的场景下;②为卡尔曼滤波的改进扩展提供技术参考,探索其在混沌系统、传感器融合(如GNSS/IMU)、故障诊断等领域的应用潜力;③结合提供的Matlab代码进行算法复现、性能优化二次开发。; 阅读建议:建议读者结合文中Matlab代码逐模块理解算法实现细节,重点关注扩散映射卡尔曼滤波的接口设计梯度流的引入方式。同时可参考文档末尾提供的其他科研案例网盘资源,拓展对智能优化、深度学习、路径规划等相关技术的综合应用能力。
内容概要:本文围绕动态系统故障诊断的不断演进方法展开研究,重点介绍并实现了基于Python的故障诊断算法,旨在提升复杂动态系统中早期故障的检测诊断能力。文中探讨了多种先进的数据驱动模型驱动相结合的诊断策略,包括残差生成、特征提取、异常检测诊断决策等关键环节,并通过仿真实验验证所提方法的有效性和鲁棒性【故障诊断】动态系统故障诊断的不断演进方法研究(Python代码实现)。该研究不仅涵盖传统信号处理状态估计技术,还融合了现代机器学习思想,推动故障诊断技术向智能化、自动化方向发展。; 适合人群:具备一定Python编程基础和控制系统背景的科研人员或工程技术人员,尤其适用于从事智能制造、航空航天、工业自动化等领域故障诊断相关研究的硕士、博士研究生及研发工程师。; 使用场景及目标:① 掌握动态系统故障诊断的基本流程核心技术;② 学习如何利用Python实现故障检测算法并在实际系统中应用;③ 借鉴文中方法改进现有诊断模型,提升复杂环境下故障识别的准确性时效性; 阅读建议:建议结合文中提供的Python代码进行实践操作,配合仿真数据深入理解各诊断模块的设计原理,同时可参考团队提供的其他MATLAB/Simulink资源进行跨平台对比研究,以全面掌握故障诊断技术的实现路径发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值