“ 生成式AI或者说AIGC的本质是一种基于概率分布的数据表征技术 ”
最近一段时间一直在做AIGC(人工智能生成内容)方面的应用,而AIGC属于生成式AI的范畴;刚开始只是把这些生成式AI拿过来用一下,但随着对大模型了解的加深,突然发现生成式AI好像也没有那么简单。
比如说,生成式AI是怎么实现的?可能有人会这么回答,是基于Transformer等架构实现,基于概率分布的一种模型。当然,这么说好像也没错,但非生成式AI又是怎么实现的呢?
生成式AI
什么是生成式AI?
简单来说,能够根据输入输出新的内容的AI就是生成式AI;但生成式AI是怎么做到的呢?
有很多人会把大模型当作生成式AI,但事实上生成式AI和大模型并不是一回事;生成式AI属于更宽泛的一个范畴,任何能够实现内容生成的AI技术都属于生成式AI。
但大模型生成内容只是生成式AI的一种实现方式,除了大模型之外还有其它的方式可以实现生成式AI;比如,隐马尔可夫模型,生成对抗网络等。
那生成式AI是怎么实现的呢?它的技术原理是什么?我们都知道模型在设计完成之后,使用训练数据进行训练,就可以让模型生成相关领域的内容;但这个模式是怎么设计实现的呢?
严格来说,现在的生成式AI都是基于概率分布实现的;生成式AI主要分为两个部分:
学习数据分布:通过训练数据学习输入特征X和标签Y的联合概率分布P(X, Y)
生成新样本: 通过条件概率P(X|Y)或P(Y|X),生成新的数据样本
所以,简单来说生成式AI就做了两件事,学习旧数据,生成新样本;大模型的训练就是学习的过程,而回答问题或生成内容就是在生成新的样本。
但具体怎么学旧数据,又怎么生成新样本,这是一个需要解决的问题;而目前的生成式大模型大都是基于Transformer架构,实现的一种数学模型。
所以,生成式AI是一种通过学习联合概率分布,从而能够生成新的数据样本;它不仅能够分类,而且能生成与训练数据相似的样本,而这也是AIGC的基础,没有它AIGC就是水中月,镜中花。
这也解释了,为什么大模型需要大量的线性运算,原因就在于只有线性的概率分布,才有预测的可能性;毕竟大模型需要就是有迹可循。
ok ,既然前面说了生成式大模型是基于概率进行预测,那怎么才能用概率去表征训练数据呢?也就是说大模型学习的原理是什么样的?
大模型训练或者说学习的过程,就是对训练数据的表征过程,通过对训练数据的表征,大模型参数就可以记录不同数据之间的关系,比如用向量进行表示。
通过计算不同数据之间的向量关系,以此来表示数据之间的概率关系等。
因此,以目前市面上各种各样的AIGC产品来看,比如文字,图像,视频,音乐,代码生成等模型;都是通过一种数学模型和算法,来表征这些数据之间的关系,也就是空间向量的坐标关系。
通过这些关系,大模型就能够去理解用户的输入,然后根据输入生成新的数据样本。
所以,生成式AI的本质或者说AIGC的本质,是通过对某种数据特征的学习和描述;然后再根据这些数据特征,去生成相似的新的数据。
举例来说,小孩子第一次看到照片,他也不懂得摄像的技术,也不知道什么是像素点;但如果你告诉他,用笔这样,那样,再这样就可以画出一幅画;那么他就会模仿你这个行为去画一幅画,虽然他可能并不知道这是一幅画。
而这就是数据的表征,虽然大模型并不知道什么是像素点,什么是采光;但它能根据不同图像之间的区别,记住这样那样再这样就可以生成一幅画。
所以说,生成式AI或者说生成式大模型的本质是一种数据表征技术,然后根据表征特点的概率,生成一个最符合当前概率的内容。
而生成式AI最大的作用就是——创造,通过这种方式可能会让AI具备远超人类本身的创造力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。