Radiology|“AI引领未来医疗:全自动化AI胸部CT扫描精准预测”
AI多模型一体化全流程解决医疗问题成为发文新趋势,在期刊《Radiology》上发表了一篇文章“AI for Multistructure Incidental Findings and Mortality Prediction at Chest CT in Lung Cancer Screening”旨在利用人工智能在肺癌筛查中胸部CT的多结构偶然发现和死亡率预测。
01.引言
在肺癌筛查的胸部CT扫描中,经常能检测到非肺部的偶然异常,这些异常在临床上可能极具重要性。它们可能包括心血管系统的异常、膈肌上方或下方的问题,以及胸壁其他结构的异常。对这些异常的精准识别和及时评估,对于患者的整体健康管理和预后预测至关重要。
研究的主要目标是开发一种基于人工智能(AI)的自动化模型,该模型能够综合考虑多种结构的分割(例如冠状动脉钙化、心包外脂肪等),并利用自动特征提取方法和机器学习技术来检测胸部CT扫描中的非肺部偶发异常。此外,该模型还旨在探究这些偶发异常与全因死亡率(All-Cause Mortality, ACM)之间的关联。此研究努力通过将先进的AI技术应用于医学影像分析,为患者提供更全面的健康评估和更精准的风险预测,从而优化患者的管理和治疗策略。
02.模型结构
- 多结构分割模块:
- 使用TotalSegmentator,一个开源的自动分割模型,对CT扫描中的多种解剖结构进行分割。这些结构包括心血管系统、胸膜下及胸壁结构等,旨在确保AI模型能够识别并分析尽可能多的身体部位。
- 特征提取模块:
- 对分割出的结构进行定量的图像分析,提取多种特征,如均值、第90百分位数在Hounsfield单位中的表示以及体素体积等。这些特征在临床上是可解释的,为模型提供了丰富的输入数据。
- 预测模型:
-
采用**极端梯度提升决策树模型(XGBoost)**进行分类和预测。该模型被训练来识别肺外显著的偶发异常,并预测2年和10年的全因死亡率(ACM)。
-
模型能够结合成像特征和人口统计数据,通过集成学习方法来提高预测的准确性和鲁棒性。
- 解释与可视化模块:
- 提供了图像解释功能,能够突出显示高风险图像特征,并给出具体的结构风险评分。这些解释和可视化工具能够帮助放射科医生快速定位并分析异常结构。
- 验证与评估模块:
-
使用两种不同的方法进行严格的模型验证和评估,包括10折交叉验证和外部验证,以确保模型在不同数据集上的稳定性和泛化能力。
-
通过计算AUC值和其他性能指标来评估模型在预测ACM和偶发异常方面的性能。
- 集成与自动化:
- 该AI模型是一个完全自动化的集成解决方案,能够自动处理CT扫描数据,进行结构分割、特征提取、预测和解释,从而显著提高了诊断的效率和准确性。
模型结构示意图
03.实验结果
-
全自动化多结构分割:模型能够自动对胸部CT扫描中的32个关键结构进行分割,包括多个临床相关的解剖结构和器官子区域。这些分割的结构为后续的特征提取和风险评估提供了基础。
-
特征提取与量化:从每个分割的结构中,模型自动提取了15个具有临床解释性的放射组学特征,并进行了量化分析。这些特征涵盖了多种影像信息,如组织的平均Hounsfield单位、第90百分位数和体素体积等。
-
死亡率预测:
-
模型成功预测了10年全因死亡率(ACM),其受试者工作特征曲线下面积(AUC)达到了0.72,具有统计学显著性(P < .001)。
-
在预测2年ACM时,模型同样表现出色,AUC为0.71。
-
当仅关注显著的非肺部偶发异常时,模型的AUC为0.70,显示出在非肺部疾病相关的风险评估中的有效性。
实验结果
- 高风险结构识别:模型不仅预测了死亡率,还能够对每个参与者的具体结构进行风险评分,从而识别出高风险的解剖结构。这有助于放射科医生更快地锁定关键区域,进行进一步的临床评估。
04.研究意义
- 提高诊断效率与准确性:
- 通过采用全自动化的AI模型,在胸部CT扫描中实现了对多种结构的高精度分割与异常检测,显著提升了诊断的效率和准确性。这使得放射科医生能够更迅速地获得全面的诊断信息,有效降低了漏诊和误诊的风险。
- 实现早期风险识别:
- AI模型能够预测全因死亡率,尤其是在短期(2年)和长期(10年)的随访中均表现出较高的准确性。这有助于医生在疾病早期识别高风险患者,及时采取干预措施,改善患者的预后。
- 辅助临床决策:
- AI模型还为放射科医生提供了图像解析和结构风险评分等丰富的辅助信息。这些信息帮助医生更全面地评估患者的健康状况,并制定出更精确的治疗方案。
- 推动医疗资源的优化:
- 他们能够将更多精力投入到复杂病例的诊断中,同时也促进了医疗资源的优化分配,提升了整体的医疗服务质量。
- 促进AI技术在医疗领域的发展:
- 自动化的AI模型应用,不仅减轻了放射科医生的工作负担,使本研究对于AI在医疗影像分析领域的应用提供了有力的支持,展现了AI在处理复杂临床场景中的巨大潜力和价值。随着技术的持续进步,我们预期AI将在医疗领域扮演越来越重要的角色,推动医疗服务模式的持续创新与变革。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。