🚀 快速阅读
-
功能:FinRobot 提供市场预测、文档分析和交易策略等多种金融专业 AI 代理。
-
技术:基于大型语言模型(LLMs)和金融思维链(CoT)提示技术,增强复杂分析和决策能力。
-
应用:广泛应用于金融领域的市场预测、年度报告分析和交易策略优化。
正文(附运行示例)
FinRobot 是什么
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用。它基于大型语言模型(LLMs)构建,能够进行复杂的金融分析和决策。通过金融思维链(CoT)提示功能,FinRobot 将复杂的金融问题分解为逻辑步骤,增强其分析能力。
FinRobot 的架构包括金融 AI 代理层、金融 LLM 算法层、LLMOps 和 DataOps 层以及多源 LLM 基础模型层,支持市场预测、文档分析和交易策略等多种金融专业 AI 代理。
FinRobot 的主要功能
-
金融机器学习(FinML):基于多种机器学习技术提高金融预测分析的能力。
-
金融多模态 LLM:处理并综合来自多种模态(如文本、图表和表格)的信息,提供全面深入的金融文档理解。
-
LLMOps 层:实现高模块化和可插拔性,优化任务分配,包括任务管理、代理注册、代理适配器和主管代理等组件。
-
数据操作层(DataOps Layer):管理金融分析所需的广泛和多样化的数据集,确保输入 AI 处理管道的所有数据都是高质量和代表当前市场状况的。
-
金融思维链(Financial Chain-of-Thought)提示技术:业务特定分析、市场分析、估值分析,提供对记录和派生值的来源和推导的详细解释,适应性和发展性。
-
市场模拟:通过结合类似人类的推理过程来超越纯粹的数值分析,模拟市场参与者的决策过程。
-
市场预测代理:分析公司的股票代码、最新财务数据和市场新闻,预测其股票走势。
-
年度报告分析代理:专门用于分析公司的年度报告,提取关键信息并生成摘要。
-
交易策略代理:根据市场数据和预定的规则制定交易策略,结合技术分析和基本面分析,为不同风险偏好的投资者提供定制化的交易建议。
-
金融图表代理:专门用于生成和解释金融图表,将复杂的数据可视化,帮助用户更直观地理解市场趋势和模式。
-
优化交易代理:通过机器学习算法优化现有的交易策略,回测历史数据,调整参数,以提高策略的性能和稳定性。
FinRobot 的技术原理
-
金融 AI 代理层(Financial AI Agents Layer):通过金融思维链(CoT)技术将复杂的金融问题分解为逻辑序列,增强复杂分析和决策能力。
-
金融 LLM 算法层(Financial LLM Algorithms Layer):配置和使用针对特定领域和全球市场分析而定制的经过特殊调整的模型。
-
LLMOps 和 DataOps 层:应用训练和微调技术以及使用与任务相关的数据来生成准确的模型。
-
多源 LLM 基础模型层(Multi-source LLM Foundation Models Layer):集成各种 LLM,使上述各层能直接访问它们。
如何运行 FinRobot
1. 创建虚拟环境
conda create --name finrobot python=3.10 conda activate finrobot
2. 下载 FinRobot 仓库
git clone https://github.com/AI4Finance-Foundation/FinRobot.git cd FinRobot
3. 安装依赖
pip install -U finrobot
4. 修改配置文件
1) 将 OAI_CONFIG_LIST_sample 重命名为 OAI_CONFIG_LIST 2) 删除 OAI_CONFIG_LIST 文件中的注释行 3) 添加你的 OpenAI API 密钥
5. 运行示例代码
import autogen from finrobot.utils import get_current_date, register_keys_from_json from finrobot.agents.workflow import SingleAssistant # 配置 llm_config = { "config_list": autogen.config_list_from_json( "../OAI_CONFIG_LIST", filter_dict={"model": ["gpt-4-0125-preview"]}, ), "timeout": 120, "temperature": 0, } # 注册 FINNHUB API 密钥 register_keys_from_json("../config_api_keys") # 运行市场预测代理 company = "NVDA" assitant = SingleAssistant( "Market_Analyst", llm_config, human_input_mode="NEVER", ) assitant.chat( f"Use all the tools provided to retrieve information available for {company} upon {get_current_date()}. Analyze the positive developments and potential concerns of {company} " "with 2-4 most important factors respectively and keep them concise. Most factors should be inferred from company related news. " f"Then make a rough prediction (e.g. up/down by 2-3%) of the {company} stock price movement for next week. Provide a summary analysis to support your prediction." )
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。