🤔 什么是 MGAS (Multi-Generative Agent System)?
想象一下,你不是让一个 AI 做事,而是让一群 AI 协同工作。这就是 MGAS 的核心概念:多个具有自主能力的 agent 在一个共享环境中相互协作。这些 agent 不仅仅是简单的程序,它们拥有:
-
角色设定:就像团队中的不同角色,每个 agent 都有自己的职责和目标。
-
感知能力:它们能感知周围环境的变化,并做出相应反应。
-
决策能力:它们能根据自身目标和环境状态,自主地做出行动决策。
-
复杂行为:它们能执行复杂的任务,例如生成个性化内容,或者进行长期规划。
-
通信能力:它们之间可以相互通信、共享信息,达成共识,共同解决问题。
简而言之,MGAS 是一个 AI 团队,它们不仅能独立完成任务,还能通过协同合作,发挥出 1+1>2 的效果。
🎯 MGAS 的三大应用领域
MGAS 的应用潜力非常广泛,我们将其主要应用领域概括为三个方面:
- 复杂任务解决:
-
代码生成:多个 agent 分别负责设计、编码、测试,共同开发一个软件项目 (如 ChatDev)。
-
推理增强:多个 agent 进行辩论、投票,提高推理的准确性 (Du et al., 2023)。
-
核心思想:将复杂任务分解为多个子任务,由不同的 agent 协同完成。
-
优势:提升任务性能、加速开发过程、提高解决方案的质量。
-
例子:
- 特定场景模拟:
-
社交媒体模拟:模拟信息传播、情绪演变、用户行为 (如斯坦福镇)。
-
城市规划模拟:模拟城市发展,优化交通、资源分配 (如 UGI)。
-
经济活动模拟:模拟市场行为、金融交易。
-
核心思想:利用 agent 模拟真实世界中的各种场景。
-
优势:模拟复杂系统、研究社会现象、预测未来趋势,无需在现实世界中进行昂贵或危险的实验。
-
例子:
- 生成式 Agent 评估:
-
策略能力评估:在 MGAS 中测试 LLMs 的长期决策能力、竞争能力。
-
情感理解能力评估:在 MGAS 中测试 LLMs 理解人类情感和互动的能力。
-
agent 训练:利用 MGAS 提供奖励,训练出更好的 agent。
-
核心思想:利用 MGAS 评估 LLMs 和 agent 的能力。
-
优势:提供更灵活、动态的评估方法,比传统的基准测试更客观。
-
例子:
🛠️ MGAS 的核心构成
MGAS 的构建主要涉及以下两个核心部分:
-
生成式 Agent:
-
具备角色设定、感知、决策、行动、记忆和沟通能力。
-
可以使用 LLMs 作为核心控制,并根据任务进行定制。
-
环境:
-
包括规则、工具和干预接口,定义 agent 的行为方式和交互方式。
-
工具负责将 agent 的行动指令转换为具体结果。
-
规则定义了 agent 之间的通信模式和与环境的交互模式。
-
干预接口允许外部系统对 MGAS 进行干预。
🚧 MGAS 面临的挑战
MGAS 虽潜力巨大,但仍面临不少挑战:
-
Agent 的固有问题:
-
幻觉:Agent 可能产生错误的或不真实的信息。
-
对齐问题:Agent 的行为可能与期望不符。
-
长文本能力不足:在处理复杂信息时,agent 可能忘记关键细节。
-
交互的复杂性:
-
效率爆炸:多个 agent 同时交互会增加计算和通信成本。
-
累积效应:一个 agent 的错误会影响整个系统的结果。
-
评估难题:
-
缺乏客观指标:难以衡量群体行为的优劣。
-
缺乏通用基准:不同 MGAS 难以进行横向比较。
🔮 MGAS 的未来方向
未来,MGAS 的研究将重点关注以下几个方向:
-
增强 Agent 的能力:提升对齐性、减少幻觉、增强长文本能力。
-
优化 Agent 交互:降低通信成本,提高协同效率,减少累积效应。
-
开发更完善的评估方法和基准:提出更客观的指标,建立通用的评估框架。
-
探索更大规模的 MGAS:研究大规模 MGAS 的涌现行为和新特性。
🔑 总结
MGAS 是一个令人兴奋的新领域,它将多个具有自主能力的 AI agent 整合在一起,以解决复杂问题、模拟真实世界,并评估 AI 的能力。虽然目前还面临许多挑战,但 MGAS 的巨大潜力已经显现。它不仅是 AI 技术的未来趋势,也有望成为改变我们生活和社会的重要力量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。