最近用DeepSeek R1的朋友应该都经历过这种绝望:精心构思的提问刚发出去,迎面而来的不是AI的智慧回复,而是冷冰冰的
根据实测,高峰时段官方网页版成功率甚至不足10%。这种可用性,一句话形容就是:薛定谔式用户体验。
不过别急着摔键盘,今天教你们一个魔法组合:腾讯云满血版API+开源神器Cherry Studio。经过实测,这套方案调用成功率100%,响应速度比官网快三倍不止。
为什么第三方才是正解?
官方服务器过载的根本原因,在于满血版DeepSeek R1惊人的硬件需求——671B参数规模需要1.5TB内存支撑。这个量级直接把中小云厂商挡在门外,很多所谓"R1服务"其实是32B的青春版,质量缩水不言而喻。
而腾讯云昨天刚新推出的免部署接口,不仅提供完整版R1,还有满血版V3,满足你各种个性需求。更良心的是在2月25日前完全免费(划重点),这对被官网折磨疯了的用户来说简直是雪中送炭。
https://cloud.tencent.com/document/product/1772/115969
三步搭建专属AI工作站
这套方案的精妙之处在于:腾讯云负责提供满血模型,Cherry Studio则把专业级AI工作台塞进你的电脑。整个过程不需要写一行代码,跟着教程走:
获取腾讯云API密钥
登陆腾讯云账号,在知识引擎原子能力创建API Key
安装Cherry Studio
这款开源神器在GitHub已有8.8k星,
github.com/CherryHQ/cherry-studio
支持三大操作系统:Windows用户直接下载exe安装包
Mac用户推荐用Homebrew一键安装
Linux党有AppImage通用包
配置你的AI核弹
安装完成后:点击左下角「设置」-「模型服务」,点击最下面的添加,以添加模型服务商,提供商类型选择 OpenAI
然后在提供商列表中选择 Tencent,粘贴从腾讯云生成的API KEY。
API地址填写为:https://api.lkeap.cloud.tencent.com/v1
点击模型下的添加按钮,分别添加 deepseek-v3 和 deepseek-r1
然后点击API 密钥旁边的检查,检查服务是否可用。
回到聊天页,选择使用刚才创建的模型端点,即可欢快提问
现在你的电脑已经变身AI工作站,实测连续提问20次零失败,首字符响应速度稳定在2秒以内。
这工具还能玩出什么花?
Cherry Studio的能耐远不止聊天对话框:
300+预设智能体:从论文润色到代码审查,专业场景直接开箱即用
知识库挂载:配置embedding模型后(硅基流动免费提供),上传文档后可直接对话提问
思维可视化:自动生成流程图和架构图
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。