在深度学习训练中,通过会对数据进行归一化处理。通常讲,归一化有两点好处:
1、使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。
2、加快学习算法的收敛速度。
MinMax归一化
将数据缩放到0和1之间,公式如下:
Y = X i − m i n ( X i ) m a x ( X i ) − m i n ( x i ) Y = \frac{X_i - min(X_i)}{max(X_i) - min(x_i)} Y=max(Xi)−min(xi)Xi−min(Xi)
标准归一化
将数据所防伪均值是0,方差为1的状态,公式如下:
Y = X i − μ δ Y = \frac{X_i - \mu}{\delta} Y=