DJL-Java开发者动手学深度学习之归一化处理及源代码

本文介绍了深度学习中数据预处理的重要步骤——归一化,包括MinMax归一化、标准归一化和均值归一化,并提供了相应的源代码解析,帮助Java开发者更好地理解和应用这些技术。通过归一化,可以提升模型精度并加速算法收敛。
摘要由CSDN通过智能技术生成

在深度学习训练中,通过会对数据进行归一化处理。通常讲,归一化有两点好处:
1、使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。
2、加快学习算法的收敛速度。

MinMax归一化

将数据缩放到0和1之间,公式如下:
Y = X i − m i n ( X i ) m a x ( X i ) − m i n ( x i ) Y = \frac{X_i - min(X_i)}{max(X_i) - min(x_i)} Y=max(Xi)min(xi)Ximin(Xi)

标准归一化

将数据所防伪均值是0,方差为1的状态,公式如下:
Y = X i − μ δ Y = \frac{X_i - \mu}{\delta} Y=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值