并查集算法
题目链接:https://leetcode.com/problems/redundant-connection/description/
题目描述:
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges
. Each element of edges
is a pair [u, v]
with u < v
, that represents an undirected edge connecting nodes u
and v
.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v]
should be in the same format, with u < v
.
Example 1:
Input: [[1,2], [1,3], [2,3]] Output: [2,3] Explanation: The given undirected graph will be like this: 1 / \ 2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]] Output: [1,4] Explanation: The given undirected graph will be like this: 5 - 1 - 2 | | 4 - 3
Note:
- The size of the input 2D-array will be between 3 and 1000.
- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
题目解析:这题也容易看出用并查集算法来做,但是速度并不算快,或许有更好的算法。做法其实和经典的并查集算法一致。
class Solution { public: int find(int x,vector<int>& father) { while(x!=father[x]) x = father[x]; return x; } vector<int> findRedundantConnection(vector<vector<int>>& edges) { int size = edges.size(); vector<int> father(size+1); vector<int> rank(size+1); for(int i = 1;i<=size;++i) { father[i] = i; rank[i] = 0; } vector<int> result; for(int i = 0;i<size;++i) { int father_1 = find(edges[i][0],father); int father_2 = find(edges[i][1],father); if(father_1 == father_2) { result.push_back(edges[i][0]); result.push_back(edges[i][1]); continue; } else { if(rank[father_1] > rank[father_2]) { father[father_2] = father_1; } else { if(rank[father_1] == rank[father_2]) rank[father_2]++; father[father_1] = father_2; } } } return result; } };