算法分析与设计丨第九周丨LeetCode(13)——Redundant Connection(Medium)

并查集算法

题目链接:https://leetcode.com/problems/redundant-connection/description/

题目描述:

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.


    题目解析:这题也容易看出用并查集算法来做,但是速度并不算快,或许有更好的算法。做法其实和经典的并查集算法一致。


    class Solution {
    public:
        int find(int x,vector<int>& father)
        {
            while(x!=father[x])
                x = father[x];
            return x;
        }
        
        vector<int> findRedundantConnection(vector<vector<int>>& edges) {
            int size = edges.size();
            vector<int> father(size+1);
            vector<int> rank(size+1);
            
            for(int i = 1;i<=size;++i)
            {
                father[i] = i;
                rank[i] = 0;
            }
            
            vector<int> result;
            
            for(int i = 0;i<size;++i)
            {
                
                int father_1 = find(edges[i][0],father);
                int father_2 = find(edges[i][1],father);
                
                if(father_1 == father_2)
                {
                    result.push_back(edges[i][0]);
                    result.push_back(edges[i][1]);
                    continue;
                }
                else
                {
                    if(rank[father_1] > rank[father_2])
                    {
                        father[father_2] = father_1;   
                    }
                    else
                    {
                        if(rank[father_1] == rank[father_2])
                            rank[father_2]++;
                        father[father_1] = father_2;
                    
                    }
                    
                    
                    
                }
                
                
                
            }
            return result;
            
        }
    };





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值