poj2115欧几里德扩展

分析:题目就是要求满足方程A+CX = B(mod 2k次方)的最小X解,当然X>0.

  1. 也就是Cx + Dy = B-A,其中D = 2k次方,标准的欧几里德扩展,我们利用欧几里德扩展解方程Cx + Dy = gcd(C,D)得到x0,然后方程Cx + Dy = B-A的解x1 = x0/gcd(C,D)*(B-A),当然了,写程序的时候是x1 = x0*(B-A)/gcd(C,D)。
  2. 求出x1之后,怎么转化为题目要求的最小X呢?x1 = X+cyc*t,如果x1是负值,求余得到的X肯定也是负值,此时x1%cyc+cyc就是正值了。利用周期性((x1%cyc)+cyc)%cyc就可以得到结果了。
#include <cstdio>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;

typedef long long ll;
ll A,B,C,a,b,c,g,x,y;
int k;

//递归方法一
//int extgcd(int a,int b,int &x,int &y)
//{
//    int ans;
//    if(b == 0){ ans = a;x = 1;y = 0;}
//    else{
//        extgcd(b,a%b,x,y);
//        int temp = x;
//        x = y;
//        y = temp-(a/b)*y;
//    }
//    return ans;
//}

//递归方法二
//int extgcd(int a,int b,int &x,int &y)
//{
//    int ans;
//    if(b == 0){ ans = a;x = 1;y = 0;}
//    else{ ans = extgcd(b,a%b,y,x); y -= (a/b)*x;}
//    return ans;
//}

void extgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
    if(!b){ x = 1; y = 0; d = a;}
    else{ extgcd(b,a%b,d,y,x); y -= (a/b)*x;}
    return;
}

int main()
{
    while(cin >> A >> B >> C >> k,A+B+C+k)
    {
        a = C;
        b = (ll)1<<k;
        c = B-A;
        extgcd(a,b,g,x,y);
        if(c%g) {printf("FOREVER\n");continue;}
        ll cyc = b/g;
        printf("%lld\n",((x*c/g)%cyc+cyc)%cyc);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值