项目环境
环境:Anaconda Python 3.8
编辑器:PyCharm 2021.2.3
Packages:OpenCV ,numpy
实现思路
实现思路很简单,先将图片转换成灰度图,再根据每个像素点的灰度值,替换成能体现相应灰度的字符。可以直接生成字符串,也可以生成图片。我这里为了方便显示,就直接生成了图片。我使用的黑色背景,用白色的字符集["#","+","-","."],来依次表示颜色由浅到深。
源码如下:
import cv2
import numpy as np
arr = ["#", "+", "-", "."]
# 读图
img = cv2.imread("data/test.jpg")
# 转灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 显示灰度图
cv2.imshow("img", gray)
h = np.size(gray, 0)
w = np.size(gray, 1)
# 初始化与原图一样尺寸的黑色图片
res = np.ndarray([h, w])
font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(0, h, 5):
for j in range(0, w, 5):
# 获取灰度值对应字符
t = arr[round(3 - gray[i, j] / 255 * 3)]
# 绘制字符
cv2.putText(res, t, (j, i), font, 0.1, color=(255, 255, 255))
# 显示结果图
cv2.imshow("res", res)
# 保存结果图
cv2.imwrite("data/res.jpg", res)
cv2.waitKey()
最终效果:
细节效果(密集恐惧症请退后):