机器学习
夕兮曦兮
这个作者很懒,什么都没留下…
展开
-
机器学习中的距离计算
《机器学习-周志华》学习笔记机器学习中的距离距离度量的基本性质对函数 dist(⋅,⋅)dist(\cdot,\cdot)dist(⋅,⋅) ,若它是一个“距离度量”,则其满足一下性质:非负性:dist(xi,xj)≥0dist(x_i,x_j) \ge 0dist(xi,xj)≥0;同一性:dist(xi,xj)=0,当且仅当xi=xjdist(x_i,x_j) = 0,\tex...原创 2019-01-06 18:37:05 · 1372 阅读 · 0 评论 -
西瓜书学习笔记目录篇
9 聚类聚类任务性能度量 外部指标 内部指标距离计算 闵可夫斯基距离 VDM(Value Difference Metric)原型聚类 k均值算法 学习向量量化 高斯混合聚类密度聚类层次聚类...原创 2019-01-14 18:17:33 · 1265 阅读 · 0 评论 -
西瓜数据集
文章目录西瓜数据集4.0西瓜数据集4.0密度 含糖量0.697 0.460.774 0.3760.634 0.2640.608 0.3180.556 0.2150.403 0.2370.481 0.1490.437 0.2110.666 0.0910.243 0.2670.245 0.0570.343 0.0990.639 0.1610.657 0.1980.36...原创 2019-01-14 20:54:00 · 3502 阅读 · 0 评论 -
机器学习及深度学习中的符号说明
文章目录数和数组集合和图索引线性代数中的操作微积分概率和信息论函数数据集和分布数和数组a标量(整数或实数)a \qquad 标量(整数或实数)a标量(整数或实数)a向量\boldsymbol{a} \qquad 向量a向量 编辑中用boldsymbol+小写字母A矩阵\boldsymbol{A} \qquad 矩阵A矩阵 编辑中用boldsymbol+大写字母A张量\sf{A} \qq...原创 2019-02-15 11:28:34 · 3900 阅读 · 0 评论 -
面试题整理
L1和L2正则化的区别L1是模型各个参数的绝对值之和。 L2是模型各个参数的平方和的开方值。L1会趋向于产生少量的特征,而其他的特征都是0.因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0 ,产生稀疏权重矩阵L2会选择更多的特征,这些特征都会接近于0。最优的参数值很小概率出现在坐标轴上,因此每一维的参数都不会是0。当最小化||w||时,就会使每一项趋近于0为...原创 2019-03-25 15:51:35 · 271 阅读 · 0 评论