花书学习笔记
《DEEP LEARNING》学习笔记整理,学习心得等
夕兮曦兮
这个作者很懒,什么都没留下…
展开
-
花书学习笔记(目录)
文章目录线性代数eg:主成分分析概率与信息论线性代数 标量、向量、矩阵和张量 矩阵和向量相乘 单位矩阵和逆矩阵 线性相关和生成子空间 范数 特殊类型的矩阵和向量 特征分解 奇异值分解 Moore-Penrose 伪逆 迹运算 行列式eg:主成分分析概率与信息论[]草稿区markdown 中接矩的写法https://blog.csdn.net/qq_382...原创 2019-02-15 11:32:55 · 1384 阅读 · 0 评论 -
机器学习及深度学习中的符号说明
文章目录数和数组集合和图索引线性代数中的操作微积分概率和信息论函数数据集和分布数和数组a标量(整数或实数)a \qquad 标量(整数或实数)a标量(整数或实数)a向量\boldsymbol{a} \qquad 向量a向量 编辑中用boldsymbol+小写字母A矩阵\boldsymbol{A} \qquad 矩阵A矩阵 编辑中用boldsymbol+大写字母A张量\sf{A} \qq...原创 2019-02-15 11:28:34 · 3900 阅读 · 0 评论 -
深度学习数学基础--线性代数
文章目录前言2.1 标量、向量、矩阵和张量2.2 矩阵和向量相乘2.3 单位矩阵和逆矩阵2.4 线性相关和生成子空间2.5 范数机器学习中常用的范数2.6 特殊类型的矩阵和向量2.7 特征分解2.8 奇异值分解2.9 Moore-Penrose伪逆2.10 迹运算矩阵迹的一些性质:2.11 行列式前言机器学习数学基础整理只涉及理解深度学习必须的代数知识。2.1 标量、向量、矩阵和张量标量...原创 2019-02-12 20:05:16 · 883 阅读 · 0 评论 -
主成分分析
前言花书第一章的实例内容主成分分析 (principal components analysis,PCA)是一个简单的机器学习算法,可以通过简单的线性代数知识推导。问题说明假设在 Rn\Bbb{R}^nRn 空间中有m个点 {x(1),⋯ ,x(m)}\{\boldsymbol{x}^{(1)},\cdots,\boldsymbol{x}^{(m)}\}{x(1...原创 2019-02-13 18:57:14 · 246 阅读 · 0 评论 -
深度学习数学基础--概率与信息论(1)
文章目录3.1 为什么要使用概率3.2 随机变量3.3 概率分布离散型变量和概率质量函数连续型变量和概率密度函数3.4 边缘概率3.5 条件概率3.6 条件概率的链式法则3.7 独立性和条件独立性3.8 期望、方差和协方差期望方差协方差3.1 为什么要使用概率不确定性有三种可能的来源:被建模系统内在的随机性不完全观测不完全建模频率派概率(frequentist probabil...原创 2019-02-18 17:10:04 · 482 阅读 · 0 评论 -
贝叶斯规划
文章目录贝叶斯规划贝叶斯规划已知 P(y∣x)P(\rm{y}\mid x)P(y∣x) 和 P(x)P(\rm{x})P(x) 时计算 P(y∣x)P(\rm{y} \mid x)P(y∣x):P(x∣y)=P(x)P(y∣x)P(y)P(\rm{x}\mid y)=\frac{P(x)P(y\mid x)}{P(y)}P(x∣y)=P(y)P(x)P(y∣x)其中 P(y)P(\r...原创 2019-02-26 11:40:01 · 342 阅读 · 0 评论 -
深度学习数学基础--概率与信息论(2)
文章目录常用概率分布Bernoulli 分布Multinoulli 分布高斯分布指数分布和 Laplace 分布Dirac 分布和经验分布分布的混合常用概率分布Bernoulli 分布Bernoulli 分布(Bernoulli distribution):单个二值随机变量的分布,右单个参数 ϕ∈[0,1]\phi \in [0,1]ϕ∈[0,1] 控制, ϕ\phiϕ 给出了随机变量等于1...原创 2019-02-19 13:11:20 · 784 阅读 · 0 评论 -
连续型随机变量的技术细节
文章目录连续型随机变量的技术细节技术细节1测度论术语--零测度测度论术语--几乎出处技术细节2连续型随机变量的技术细节连续型随机变量和概率密度函数的深入理解需要用到数学分支测度论(measure theory)的相关内容来扩展概率论。花书只介绍一些测度论用来解决的问题。技术细节1测度论的一个重要贡献:提供一些点集的特征,使在计算概率时不会遇到悖论。连续型向量值随机变量 x\bf{x}x...原创 2019-02-26 13:08:01 · 841 阅读 · 0 评论