机器学习

  1. 逻辑回归和线性回归对比有什么优点
  2. 逻辑回归可以处理非线性问题吗
  3. 分类问题有哪些评价指标,每种的使用场景
  4. 讲一下正则化,L1和L2正则化各自的特点
  5. 讲一下常用的损失函数以及各自的适用场景
  6. 讲一下决策树和随机森林
  7. 讲一下GBDT的细节,写出GBDT的目标函数
  8. GBDT和Adaboost的区别和联系
  9. 手推softmax loss公式
  10. 讲一下SVM,SVM和LR有什么联系
  11. 讲一下PCA的步骤,PCA和SVD的区别和联系
  12. 讲一下ensemble
  13. 偏差和方差的区别,ensemble的方法中哪些是降低偏差,哪些是降低方差
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值