不知不觉,已经挂着AI产品经理的title过了一年多,盘点后竟然发现,这一年中居然从0到1做了4款AI应用产品,涉及内容、营销销售、私域运营等方向,忙碌而充实。今天就结合自己这一年多的AI转型实践,和大家分享下我关于AI产品经理的一些总结和思考。
一、怎样转型AI产品经理
可能很多人都认为,AI产品经理有很高的技术门槛,最好是算法出身,最差也得懂技术是开发出身吧,但实际上不同的公司不同的业务项目,对AI产品经理的要求是有很大差异的。就我个人了解来讲,AI产品经理的方向主要有三类,而转型AI产品经理的路径主要有两种:
1、以项目类型来划分AI产品经理的3个方向:
按我个人理解,人工智能并不是一个行业,而是一种基础服务能力,因此不同的产业,需要的AI产品经理技能必然是不一样的。
(1)AI底层服务:
例如芯片类偏硬件(寒武纪)、计算服务类偏算力(百度的AI开放平台),还有些数据收集加工类偏数据处理(神策),这样的AI项目需要AI产品经理懂硬件、有技术平台、数据平台类框架设计经验;
(2)AI技术服务:
例如CV小龙提供的计算机视觉能力,科大讯飞提供的语音识别能力,还有经常听说的自然语言处理(微软小冰类机器人),知识图谱(谷歌百度搜索里的关联搜索)等AI技术能力,这样的AI项目需要AI产品经理懂技术,最好是有算法基础;
(3)AI应用产品:
多2B类的项目,例如常见的安防监控体统、金融风控系统、语音外呼系统等,当然,也有2C类的应用,但更多的是某个模块,例如身份验证里的证件识别、人脸识别、声纹识别, 还有最常见的推荐系统,这样的AI项目需要AI产品经理懂业务场景、懂用户痛点,最好有C端及B端产品经验。
2、转型AI产品经理的2个路径:
因为AI产品经理的本质还是产品经理,但鉴于AI能力涉及到复杂的算法,因此我个人认为,最佳的转行路径有下面两个。当然,也可以由运营、甚至市场转型,但前提是要先转型成产品经理,然后再转型成AI产品经理。
(1)技术转型:
AI类产品的落地过程中,最重要的角色是算法和工程,其中,工程偏落地应用,算法偏模型搭建。以我所在的人工智能研发团队来讲,如果项目在起步阶段,工程人数会大于算法人数,因为模型解决问题的效率和效果还有待验证,方向未定的情况下,很多功能可能用普通的规则逻辑即可解决。如果项目是强AI的,那么就要有专职而且大量的算法工程师,专注于模型的不断迭代和优化,因为这时候工程框架基本只需要维护就好。
因为AI的三要素是算法、算力和数据,而技术人员对算法和算力的了解和熟知程度是更高的,而且对新技术的实现及落地有更深入和更精准的判断,特别是在AI底层服务及AI技术服务类的项目中,有天然的优势,非常适合转型为技术驱动类项目领域的AI产品经理。
(2)产品转型:
这里特指传统产品经理的转型,因为在基础能力上,传统产品经理和AI产品经理是相同的,即分析并判断在某个场景中可以用什么样的解决方案在某种程度上解决对应的什么问题。再通俗点就是要能发现问题、分析问题和解决问题,至于解决问题是用什么具体技术方案或算法模型,这个更像是用一个杠杆翘起一个重物时施加重力的物质(可以是石头、也可以是身体),但更重要的是找到杠杆的支点,这个支点就是发现和分析问题决定的。(详细的差异后续我再单独发文分享,因为差异点具体分析还挺多的)
基础能力具备了,因为AI项目实现产品目标的技术手段多依赖于算法模型,而且面对的场景多是业务导向或技术导向,因此懂得一定的算法技术知识,是这个工种与传统产品最大的差异。至于了解到什么程度,我个人认为如果是转型到AI应用型产品,只需要了解各种机器学习算法适用什么样的场景,能解决什么样的问题,存在的优劣势是什么,以及如何进行效果验收即可。但如果是转型到AI底层服务或AI技术服务型产品,那就需要深入了解具体的算法原理、特征提取、模型构建、模型影响因子、模型评估指标等一系列技术知识,这个对于非计算机专业的产品从业者来讲还是有一定难度的。
说说我自己的例子吧,非计算机专业出身,之前从事C端和B端产品项目,有一定的标签画像及推荐系统知识(有实际参与项目的了解,但不精通),因此我很清晰地知道自己很难去做AI底层服务和AI技术服务型产品的,因为我的优势在场景分析,在业务理解,在方案设计,更适合应用型的AI产品项目。因此在我入职后,leader给我分配的也基本是这类项目,我可以很明显地感知到在这些方面,自己相比组内那些做底层能力和平台服务的算法出身产品还是有很大优势的,因为更关注业务场景,更关注用户,也更关注ROI和敏捷落地。
二、AI应用型产品经理都在做些什么
我这一年多的AI项目涉及领域包括内容、营销销售、私域运营,因为处于数字化转型改革的阶段,我们整个人工智能团队有300多号人,纯AI技术水平还算不错吧(世界级的竞赛经常斩获冠军),所以供应用型AI产品经理的发挥空间还是蛮大的,那具体都在做些什么呢?
1、业务对接
数字化转型的一般都是传统公司,这类公司的主体业务过往基本依赖线下,而主导业务流程的岗位一般都是企划,对比互联网行业,其实是类似运营的角色,我们一般称呼业务方。但这类业务方最大的特点是,决定了业务流程,但并非一线实操者。这里想起华为的一句话:让听得到炮火的人做决定,想要解决的就是这个问题吧,用互联网的行话说就是他们远离用户。
因此产品经理的重要性就被凸显了,一方面,承担着作为连接业务方和技术开发方的桥梁,负责业务场景诉求的目标对齐,以及具体产品方案转化;另一方面,作为专业的产品经理,需要深刻理解场景和用户,从实际使用者的角度辩证地和业务方统一价值判断和要达成的目标。前者容易后者难,如果做不到后者,产品经理很可能沦为“工具人”。
可以看出,这个部分的工作实际上和传统的产品经理是一致的,关键点在于理解业务、判断价值、统一目标。
2、方案设计
这个环节就是考验产品经理专业性的时候啦,因为业务目标和场景的多变化性,这里对产品经理的T字型能力要求比较高,因为涉及的具体产品形态会比较多,我这一年里相继就承接过内容生产及管理、内容分发、客户管理、用户画像、推荐、问答机器人、群机器人等多种产品形态,涉及的终端横跨了PC端、APP、企业微信第三方应用、微信小程序,挑战性十足!
除了能掌控多种产品形态,作为AI产品经理,我们大多数情况承接的都是平台型产品中的某个模块,那为何会交给人工智能团队承接呢?说明是平常的产品方案解决不了的,强依赖算法能力的,例如问答机器人和内容智能生产的自然语言处理能力、内容分发的推荐能力、客户画像生成的聚类和分类能力等,因此T字型能力中一专多能的专就是我们的AI算法模型的应用能力,你需要很清楚我们有哪些AI能力能有效解决哪些场景里的哪些问题。
可以看出,这个部分的工作最能体验AI产品经理的价值,关键点在于需求挖掘、产品设计、算法选型。
3、交付反馈
因为AI类的产品目前多应用在B端项目,所以有效交付是第一目标,毕竟业务方是“爸爸”,然而后续怎么迭代,往什么方向迭代,业务方更看重业务流程,而产品则更看重用户使用,这里便能体现产品经理的另一个重要价值点,那就是通过用户反馈和数据反馈,帮助业务方验证已做功能的有效性(价值),让决策除了自上而下,也能自下而上。
同时,由于上面所讲的AI产品的模块性特点,实际工作中,除了业务反馈闭环的建立,还需要建立研发反馈闭环,也就是通过梳理研发流程形成AI侧、平台侧、业务侧多方角色的舒适协作规范,前者有利于帮助业务决策,后者有利于推进决策落地。
可以看出,这个部分的工作和传统产品经理也是类似的,会体现AI产品经理在需求验证和敏捷项目推动方面的价值,关键点在于反馈闭环、业务方反向管理、敏捷管理。
当然,上述梳理的3个重要工作范围还是比较宽泛的,后续我也会展开对每一项结合自己的实践案例进行详细的分享,特别是第2点,因为这块才是最能体现AI产品价值和差异点的地方。针对这一点,我可能会给大家分享应用型AI产品经理必须要了解的几类算法模型,对应的适用场景、以及如何评估模型效果。
三、小结
真心讲,AI产品经理的世界可能并没大家想象的那样高端,同时人工智能也没有大家想象得那么智能,同行中大家调侃的“先人工,后智能”也真的是常态,真正经历过才发现,AI产品经理要比传统产品经理辛苦得多,协作上需要管理业务方,同时搞定依赖的平台开发方,产品设计上需要从繁杂的数据中标注并发现规律,同时对算法模型有一定的了解。和人工智能的发展一样,长路漫漫,唯有和行业共同成长。
在大模型时代,我们如何有效的去学习/入门AI产品经理?
现如今产品经理岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI产品经理薪资平均值约27336元, 而且,在一线城市北京,产品经理的均薪接近30K,在新一线城市、二线城市的薪资也很可观 。
从产品经理这个岗位来说,无论是从薪资水平、发展空间还是需求量上看,依旧是个不错的岗位。
可能大家都想入门/转行AI产品经理,其中包括0经验的小白。都想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
二、AI产品经理入门手册
总共100套AI产品经理入门手册,无论你是否有无经验,都可学习成功转型!
三、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
四大模型经典PDF书籍**
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
五大模型各大场景实战案例
结语
【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额