整理了一下做过的dfs的问题
关于dfs递归写法:我一般都是把它想成一个n叉树,然后一直dfs(i+1) 进行延申,一直到结点的边界。先考虑一条路线,一般使用flag数组进行标记,用path数组保存路径上的信息 ,不要忘了加上一个结点返回的条件。总之path数组是最关键的,它保存了路径的信息,而迷宫问题和选数问题一般需要标记flag数组来控制函数不让它访问已经访问过的结点。
递归明白一点就行,思考递归时,思考两层递归就可以,dfs(i+1)结束之后会返回dfs(i)。
1 全排列问题:
题目描述
输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字。
输入输出格式
输入格式:
n(1≤n≤9)
输出格式:
由1~n组成的所有不重复的数字序列,每行一个序列。每个数字保留5个常宽。
输入输出样例
输入样例#1:
3
输出样例#1:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int flag[10];
int path[10];
int n;
void dfs(int i)
{
int j;
if(i==n+1)
{
int k;
for(k=1;k<=n;k++)
{
printf("%d ",path[k]);
}
printf("\n");
}
else
{
for(j=1;j<=n;j++)
{
if(flag[j]==0)
{
path[i]=j;
flag[j]=1;
dfs(i+1);
flag[j]=0;
}
}
}
}
int main()
{
memset(flag,0,sizeof(flag));
memset(path,0,sizeof(path));
scanf("%d",&n);
dfs(1);
}
2 油田问题:
GeoSurvComp地质调查公司负责探测地下石油储藏。 GeoSurvComp现在在一块矩形区域探测石油,并把这个大区域分成了很多小块。他们通过专业设备,来分析每个小块中是否蕴藏石油。如果这些蕴藏石油的小方格相邻,那么他们被认为是同一油藏的一部分。在这块矩形区域,可能有很多油藏。你的任务是确定有多少不同的油藏。
Input
输入可能有多个矩形区域(即可能有多组测试)。每个矩形区域的起始行包含m和n,表示行和列的数量,1<=n,m<=100,如果m =0表示输入的结束,接下来是n行,每行m个字符。每个字符对应一个小方格,并且要么是’*’,代表没有油,要么是’@’,表示有油。
Output
对于每一个矩形区域,输出油藏的数量。两个小方格是相邻的,当且仅当他们水平或者垂直或者对角线相邻(即8个方向)。
Sample Input
1 1
*
3 5
@@*
@
@@*
1 8
@@*@
5 5
*@@@@@@@
@@@@ @@*@
Sample Output
0
1
2
2
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
char a[105][105];
int n,m,result;
int d[8][2]={{1,0},{-1,0},{0,1},{0,-1},{1,1},{-1,-1},{1,-1},{-1,1}};
int check(int x,int y)
{
if(x>=0&&x<m&&y>=0&&y<n&&a[x][y]=='@')
return 1;
return 0;
}
int dfs(int x, int y)
{
int i,xx,yy;
if(check(x,y))
{
a[x][y]='.';
for(i=0;i<8;i++)
{
xx=x+d[i][0];
yy=y+d[i][1];
dfs(xx,yy);
}
return 1;
}
return 0;
}
int main()
{
int i,j;
while(~scanf("%d %d",&m,&n))
{
if(m==0&&n==0)
break;
result = 0;
memset(a,0,sizeof(a));
for(i=0;i<m;i++)
scanf("%s",a[i]);
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
if(dfs(i,j))
result++;
}
}
printf("%d\n",result);
}
}
3 整数分解为若干项之和:
将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,⋯}和N2={m1,m2,⋯},若存在i使得n1=m1,⋯,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
#include<stdio.h>
int path[100];
int sum=0;
int n;
int count=0;
void dfs(int i)
{
int j,k;
if(sum==n)
{
count++;
printf("%d=",n);
for(k=1; k<=i-1; k++)
{
if(k==i-1)
{
if(count==4)
{
count=0;
printf("%d\n",path[k]);
}
else
{
if(path[1]==n) printf("%d",path[k]);
else printf("%d;",path[k]);
}
}
else
printf("%d+",path[k]);
}
}
else
{
for(j=1; j<=n; j++)
{
if(sum+j<=n && j>=path[i-1]) //这里要保证后一个数不能比path的前一个数小并且不能超过sum
{
path[i]=j;
sum+=j;
dfs(i+1);
sum-=j;
}
}
}
}
int main()
{
memset(path,0,sizeof(path));
scanf("%d",&n);
dfs(1);
}
4 迷宫问题:
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
Input一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。Output左上角到右下角的最短路径,格式如样例所示。Sample Input
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
Sample Output
(1, 1) (2, 1) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (4, 5) (5, 5)
#include<stdio.h>
int a[100][100],n;
int path[200][2];
int min[200][2],min_=100;
int flag[100][100]= {0};
int dir[4][2]= {{0,-1},{0,1},{-1,0},{1,0}};
void dfs(int x,int y,int i)
{
int k,j;
if(x==n && y==n)
{
if(i<min_)
{
min_=i;
for(j=1;j<i;j++)
{
min[j][0] = path[j][0];
min[j][1] = path[j][1];
}
}
}
else
{
flag[x][y]=1;
for(k=0; k<4; k++)
{
if( a[x+dir[k][0]][y+dir[k][1]] == 0 && flag[x+dir[k][0]][y+dir[k][1]] == 0 && (x+dir[k][0]<=n && x+dir[k][0]>=1) && (y+dir[k][1]<=n && y+dir[k][1]>=1))
{
path[i][0] = x+dir[k][0];
path[i][1] = y+dir[k][1];
dfs(x+dir[k][0], y+dir[k][1], i+1);
flag[x+dir[k][0]][y+dir[k][1]] = 0;
}
}
}
}
int main()
{
int i,j;
scanf("%d ",&n);
for(i=1; i<=n; i++)
{
for(j=1; j<=n; j++)
{
scanf("%d",&a[i][j]);
}
}
dfs(1,1,1);
min[0][0]=1;min[0][1]=1;
for(i=0; i<min_; i++)
{
printf("(%d, %d) ",min[i][0],min[i][1]);
}
}