Leetcode 785 Is Graph Bipartite

题意

给定一个图的邻接矩阵,判断一个图是不是二分图。用两种颜色去涂色,任意有边的两个节点不能涂上相同的颜色

链接

https://leetcode.com/problems/is-graph-bipartite/description/

题解

遍历每个节点,用1和-1来表示两种色彩
对每一个没有着色的节点做dfs,将他的相邻节点染色成不同的颜色
如果发现相邻节点已经染色并且颜色相同,则不是二分图
遍历完成没有发现冲突,即为二分图

注意

for(int v : g[u]) { if(color[v] == 0) { if(!dfs(v, -c, color, g)) return false; }

为什么是这个,不是检查当前节点的邻居就可以了么,为什么我还要递归?因为外面的

        for(int i = 0; i < n; i++) {
            if(color[i] == 0 && !dfs(i, 1, color, g)) return false;
        }

只会检查未染色的节点。
比如0-1-2 给1染色后,还需要递归到2,检查2的邻居是否会产生冲突。如果只给1染色不递归,就会漏掉2的检查。

题解

class Solution {
public:
    bool isBipartite(vector<vector<int>>& g) {
        int n = g.size();
        vector<int> color(n, 0);
        for(int i = 0; i < n; i++) {
            if(color[i] == 0 && !dfs(i, 1, color, g)) return false;
        }
        return true;
    }

    bool dfs(int u, int c, vector<int>& color, vector<vector<int>>& g) {
        color[u] = c;
        for(auto& nh: g[u]) {
            if(color[nh] == 0 && !dfs(nh, -c, color, g)) {
                return false;
            }
            if(color[nh] == c) {
                return false;
            }
        }
        return true;
    }
};

时间复杂度: O ( m + n ) O(m+n) O(m+n) m是节点数,n是边数
空间复杂度:$O(n) n是节点数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值