参数可动态调节的线程池实现

背景

线程池是一种基于池化思想管理线程的工具,使用线程池可以减少创建销毁线程的开销,避免线程过多导致系统资源耗尽。在高并发的任务处理场景,线程池的使用是必不可少的。随着线程池的使用,逐渐发现一个问题,线程池的参数如何设置?

线程池参数中有三个比较关键的参数,分别是corePoolSize(核心线程数)、maximumPoolSize(最大线程数)、workQueueSzie(工作队列大小)。根据任务的类型可以区分为IO密集型和CPU密集型,对于CPU密集型,一般经验是设置corePoolSize=CPU核数+1,对于IO密集型需要根据具体的RT和流量来设置,没有普适的经验值。然而,我们一般遇到的情况多数是处理IO密集型任务,如果线程池参数不可动态调节,就没办法根据实际情况实时调整处理速度,只能通过发布代码调整参数。

如果线程池参数不合理会导致什么问题呢?下面列举几种可能出现的场景:

  1. 最大线程数设置偏小,工作队列大小设置偏小,导致服务接口大量抛出RejectedExecutionException。
  2. 最大线程数设置偏小,工作队列大小设置过大,任务堆积过度,接口响应时长变长。
  3. 最大线程数设置过大,线程调度开销增大,处理速度反而下降。
  4. 核心线程数设置过小,流量突增时需要先创建线程,导致响应时长过大。
  5. 核心线程数设置过大,空闲线程太多,占用系统资源。

线程池任务调度机制

要明白线程池参数对运行时的影响,就必须理解其中的原理,所以下面先简单总结了线程池的核心原理。

Java中的线程池核心实现类是ThreadPoolExecutor,ThreadPoolExecutor一方面维护自身的生命周期,另一方面同时管理线程和任务,使两者良好的结合从而执行并行任务。用户无需关注如何创建线程,如何调度线程来执行任务,用户只需提供Runnable对象,将任务的运行逻辑提交到执行器(Executor)中,由Executor框架完成线程的调配和任务的执行部分。

ThreadPoolExecutor是如何运行,如何同时维护线程和执行任务的呢?其运行机制如下图所示:
转载自网络

所有任务的调度都是由execute方法完成的,这部分完成的工作是:检查现在线程池的运行状态、运行线程数、运行策略,决定接下来执行的流程,是直接申请线程执行,或是缓冲到队列中执行,亦或是直接拒绝该任务。其执行过程如下:

  1. 首先检测线程池运行状态,如果不是RUNNING,则直接拒绝,线程池要保证在RUNNING的状态下执行任务。
  2. 如果workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务。
  3. 如果workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中。
  4. 如果workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务。
  5. 如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。

其执行流程如下图所示:
转载自网络

动态调节线程池参数实现

线程池相关的重要参数有三个,分别是核心线程数、最大线程数和工作队列大小,接下来将阐述如何实现动态调节线程池参数。

调节核心和最大线程数的原理

ThreadPoolExecutor已经提供了两个方法在运行时设置核心线程数和最大线程数,分别是ThreadPoolExecutor.setCorePoolSize()ThreadPoolExecutor.setMaximumPoolSize()

setCorePoolSize方法的执行流程是:首先会覆盖之前构造函数设置的corePoolSize,然后,如果新的值比原始值要小,当多余的工作线程下次变成空闲状态的时候会被中断并销毁,如果新的值比原来的值要大且工作队列不为空,则会创建新的工作线程。流程图如下:
线程池动态调节.png

setMaximumPoolSize方法执行流程是:首先会覆盖之前构造函数设置的maximumPoolSize,然后,如果新的值比原来的值要小,当多余的工作线程下次变成空闲状态的时候会被中断并销毁。

调节工作队列大小的原理

线程池中是以生产者消费者模式,通过一个阻塞队列来缓存任务,工作线程从阻塞队列中获取任务。工作队列的接口是阻塞队列(BlockingQueue),在队列为空时,获取元素的线程会等待队列变为非空,当队列满时,存储元素的线程会等待队列可用。

目前JDK提供了以下阻塞队列的实现:
image.png

但是很不幸,这些阻塞队列的实现都不支持动态调整大小,那么为什么不自己实现一个可动态调整大小的阻塞队列呢。重复造轮子是不可取的,所以我选择改造轮子。LinkedBlockingQueue是比较常用的一个阻塞队列,它无法修改大小的原因是capacity字段设置成了final private final int capacity;。如果我把final去掉,并提供修改capacity的方法,是不是就满足我们的需求呢?事实证明是可行的,作者通过这种方式实现了ResizeLinkedBlockingQueue,并在实际生产场景中使用。

结合Diamond进行实现

Diamond是阿里开源的一个管理持久配置的系统,它的特点是简单、可靠、易用,目前阿里内部绝大多数系统的配置,由Diamond来进行统一管理。Diamond为应用系统提供了获取配置的服务,应用不仅可以在启动时从Diamond获取相关的配置,而且可以在运行中对配置数据的变化进行感知并获取变化后的配置数据。详细描述详见Github

Diamond可以管理我们的配置,如果可以通过Diamond实现线程池参数管理那就再好不过了。接下来就开始上代码了,首先实现一个Diamond配置管理类DispatchConfig,然后,实现一个线程池管理的工厂方法StreamExecutorFactory

DispatchConfig类是一个静态类,在初始化的时候获取了对应Diamond的内容并设置了监听,使用的时候只需要DispatchConfig.getConfig().getCorePoolSize()

@Slf4j
@Data
public class DispatchConfig {
    public static final String DATA_ID = "com.test.config.DispatchConfig";
    public static final String GROUP_ID = "test";
    private static DispatchConfig config;

    static {
        try {
            String content = Diamond.getConfig(DATA_ID, GROUP_ID, 3000);
            config = JSON.parseObject(content, DispatchConfig.class);
            Diamond.addListener(DATA_ID, GROUP_ID, new ManagerListenerAdapter() {
                @Override
                public void receiveConfigInfo(String content) {
                    try {
                        config = JSON.parseObject(content, DispatchConfig.class);
                    } catch (Throwable t) {
                        log.error("[DispatchConfig] receiveConfigInfo an exception occurs,", t);
                    }
                }
            });
        } catch (Exception e) {
            log.error(String.format("[DispatchConfig - init] dataId:%s, groupId:%s ", DATA_ID, GROUP_ID), e);
        }
    }

    public static DispatchConfig getConfig() {
        return config;
    }

    private int corePoolSize = 10;

    private int maximumPoolSize = 30;

    private int workQueueSize = 1024;
}

StreamExecutorFactory是一个静态类,维护了一个静态属性executor,并通过initExecutor()进行初始化。在初始化的时候,工作队列使用了可调节大小的阻塞队列ResizeLinkedBlockingQueue,并设置了监听Diamond变更。Diamond发生变更的时候通过在callback中对比值是否发生改变,如果发生改变则调整workQueueSize、corePoolSize、maximumPoolSize。使用的时候只需要StreamExecutorFactory.getExecutor(),修改Diamond配置就能动态修改线程池参数。

@Slf4j
public class StreamExecutorFactory {
    private static final String THREAD_NAME = "test_dispatch";

    private static ThreadPoolExecutor executor = initExecutor();

    private static ThreadPoolExecutor initExecutor() {
        ThreadFactory nameThreadFactory = new ThreadFactoryBuilder().setNameFormat(THREAD_NAME).build();
        ResizeLinkedBlockingQueue<Runnable> workQueue = new ResizeLinkedBlockingQueue<>(DispatchConfig.getConfig().getWorkQueueSize());
        //拒绝策略,调用者线程处理
        RejectedExecutionHandler rejectedExecutionHandler = (r, e) -> {
            String msg = String.format("[S.E.F - rejectedHandler] Thread pool is EXHAUSTED!" +
                    " Thread Name: %s, Pool Size: %d (active: %d, core: %d, max: %d, largest: %d), Task: %d (completed: %d)," +
                    " Executor status:(isShutdown:%s, isTerminated:%s, isTerminating:%s)",
                THREAD_NAME, e.getPoolSize(), e.getActiveCount(), e.getCorePoolSize(), e.getMaximumPoolSize(), e.getLargestPoolSize(),
                e.getTaskCount(), e.getCompletedTaskCount(), e.isShutdown(), e.isTerminated(), e.isTerminating());
            log.warn(msg);
            if (!e.isShutdown()) {
                r.run();
            }
        };
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
            DispatchConfig.getConfig().getCorePoolSize(),
            DispatchConfig.getConfig().getMaximumPoolSize(),
            10,
            TimeUnit.SECONDS,
            workQueue,
            nameThreadFactory,
            rejectedExecutionHandler
        );

        Diamond.addListener(DispatchConfig.DATA_ID, DispatchConfig.GROUP_ID, new ManagerListenerAdapter() {
            @Override
            public void receiveConfigInfo(String content) {
                try {
                    DispatchConfig config = JSON.parseObject(content, DispatchConfig.class);
                    if (workQueue.getCapacity() != config.getWorkQueueSize()) {
                        workQueue.setCapacity(config.getWorkQueueSize());
                    }
                    if (threadPoolExecutor.getCorePoolSize() != config.getCorePoolSize()) {
                        threadPoolExecutor.setCorePoolSize(config.getCorePoolSize());
                    }
                    if (threadPoolExecutor.getMaximumPoolSize() != config.getMaximumPoolSize()) {
                        threadPoolExecutor.setMaximumPoolSize(config.getMaximumPoolSize());
                    }
                } catch (Throwable t) {
                    log.error("[S.E.F-receiveConfigInfo] an exception occurs,", t);
                }
            }
        });

        return threadPoolExecutor;
    }

    public static Executor getExecutor() {
        return executor;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值