AI训练营机器学习笔记

本文介绍了逻辑回归的基本原理、优缺点,以及如何使用鸢尾花数据集进行二分类和多分类的实例。详细讲解了模型训练流程、数据预处理、参数查看、预测以及模型性能评估的方法。
摘要由CSDN通过智能技术生成

一、学习知识点概要
逻辑回归

逻辑回归最为突出的两点就是其模型简单和模型的可解释性强,逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。
逻辑回归的原理:Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数)。

优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
缺点:容易欠拟合,分类精度可能不高

逻辑回归使用流程:
Part1 Demo实践
Step1:库函数导入
Step2:模型训练
Step3:模型参数查看
Step4:数据和模型可视化
Step5:模型预测
Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践
Step1:库函数导入
Step2:数据读取/载入
Step3:数据信息简单查看
Step4:可视化描述
Step5:利用 逻辑回归模型 在二分类上 进行训练和预测
Step5:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

二、学习内容

举例实现代码
用鸢尾花数据集举例:
1:库函数导入
##  基础函数库
import numpy as np 
import pandas as pd
## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

2:数据读取/载入
## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

3:数据信息简单查看
## 利用.info()查看数据的整体信息
iris_features.info()
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()
iris_features.tail()
## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。
iris_target
## 利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()
## 对于特征进行一些统计描述
iris_features.describe()

4:可视化描述
## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()
# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

5:利用 逻辑回归模型 在二分类上 进行训练和预测
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
## 查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测
## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)

## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)

## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

三、学习问题与解答
基于逻辑回归的分类预测涉及以下几个主要问题和解答:

1. 理解逻辑回归模型:
   - 问题:什么是逻辑回归?如何定义逻辑回归模型?
   - 解答:逻辑回归是一种用于解决分类问题的统计学习方法,通过将线性回归的输出映射到一个逻辑函数(如sigmoid函数)来进行分类预测。

2. 数据预处理:
   - 问题:如何准备和处理数据用于逻辑回归模型?
   - 解答:包括数据清洗、缺失值处理、特征选择、特征缩放等步骤,确保数据符合逻辑回归的要求。

3. 模型训练:
   - 问题:如何训练逻辑回归模型?
   - 解答:通常使用最大似然估计或梯度下降等优化算法来最小化损失函数,从而学习模型参数。

4. 模型评估:
   - 问题:如何评估逻辑回归模型的性能?
   - 解答:可以使用各种指标,如准确率、精确度、召回率、F1分数等来评估模型在测试集上的表现。

5. 优化和调参:
   - 问题:如何优化逻辑回归模型的性能?
   - 解答:可以尝试不同的正则化方法、特征工程、调整超参数等来优化模型性能。

6. 应用和部署:
   - 问题:如何在实际应用中使用和部署逻辑回归模型?
   - 解答:可以将训练好的模型部署到生产环境中,用于实时的分类预测任务。

四、学习思考与总结
逻辑回归是一种经典的机器学习算法,主要用于二分类问题。以下是我对基于逻辑回归的分类预测的学习思考和总结:

1.理解逻辑回归的原理:逻辑回归是一种广义线性模型,通过对输入特征的线性组合进行加权求和,然后通过逻辑函数(也称为sigmoid函数)将结果转换为0到1之间的概率值,表示属于某一类的概率。

2. 特征工程:在应用逻辑回归之前,需要进行特征工程,包括特征选择、特征缩放、处理缺失值等,以确保输入特征的质量和可用性。

3. 模型训练与参数优化:逻辑回归的参数通常使用梯度下降等优化算法进行学习。在训练过程中,需要选择合适的学习率和迭代次数,以使模型收敛并获得最佳参数。

4. 模型评估:完成训练后,需要使用测试数据对模型进行评估,常见的评估指标包括准确率、精确率、召回率、F1分数等,这些指标可以帮助评估模型的性能和泛化能力。

5. 解释模型结果:逻辑回归模型通常具有较好的解释性,可以通过查看特征权重来理解模型对分类的决策过程。较大的权重表示该特征对分类结果的影响较大。

6. 处理不平衡数据:在实际应用中,数据往往存在类别不平衡的情况,即某一类样本数量远远大于另一类。可以通过采样技术(如过采样、欠采样)或使用类别权重等方法来处理不平衡数据。

总的来说,逻辑回归是一种简单而有效的分类算法,适用于许多应用场景。但是,它也有一些局限性,例如对非线性关系的建模能力有限,因此在某些复杂情况下可能表现不佳。
 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值