一文拿下JAVA线程池系列(1)

1、什么是线程池

大家用jdbc操作过数据库应该知道,操作数据库需要和数据库建立连接,拿到连接之后才能操作数据库,用完之后销毁。数据库连接的创建和销毁其实是比较耗时的,真正和业务相关的操作耗时是比较短的。每个数据库操作之前都需要创建连接,为了提升系统性能,后来出现了数据库连接池,系统启动的时候,先创建很多连接放在池子里面,使用的时候,直接从连接池中获取一个,使用完毕之后返回到池子里面,继续给其他需要者使用,这其中就省去创建连接的时间,从而提升了系统整体的性能。

线程池和数据库连接池的原理也差不多,创建线程去处理业务,可能创建线程的时间比处理业务的时间还长一些,如果系统能够提前为我们创建好线程,我们需要的时候直接拿来使用,用完之后不是直接将其关闭,而是将其返回到线程中中,给其他需要这使用,这样直接节省了创建和销毁的时间,提升了系统的性能。

简单的说,在使用了线程池之后,创建线程变成了从线程池中获取一个空闲的线程,然后使用,关闭线程变成了将线程归还到线程池。

2、线程池实现原理

当向线程池提交一个任务之后,线程池的处理流程如下:

  1. 判断是否达到核心线程数,若未达到,则直接创建新的线程处理当前传入的任务,否则进入下个流程

  2. 线程池中的工作队列是否已满,若未满,则将任务丢入工作队列中先存着等待处理,否则进入下个流程

  3. 是否达到最大线程数,若未达到,则创建新的线程处理当前传入的任务,否则交给线程池中的饱和策略进行处理。

3、JAVA中的线程池

   JDK提供了线程池的具体实现实现类是:java.util.concurrent.ThreadPoolExecutor,主要构造方法:

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)

corePoolSize:核心线程大小,当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使有其他空闲线程可以处理任务也会创新线程,等到工作的线程数大于核心线程数时就不会在创建了。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前把核心线程都创造好,并启动

maximumPoolSize:线程池允许创建的最大线程数。如果队列满了,并且以创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。如果我们使用了无界队列,那么所有的任务会加入队列,这个参数就没有什么效果了

keepAliveTime:线程池的工作线程空闲后,保持存活的时间。如果没有任务处理了,有些线程会空闲,空闲的时间超过了这个值,会被回收掉。如果任务很多,并且每个任务的执行时间比较短,避免线程重复创建和回收,可以调大这个时间,提高线程的利用率

unit:keepAliveTIme的时间单位,可以选择的单位有天、小时、分钟、毫秒、微妙、千分之一毫秒和纳秒。类型是一个枚举java.util.concurrent.TimeUnit,这个枚举也经常使用,有兴趣的可以看一下其源码

workQueue:工作队列,用于缓存待处理任务的阻塞队列,常见的有4种,本文后面有介绍

threadFactory:线程池中创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字

handler:饱和策略,当线程池无法处理新来的任务了,那么需要提供一种策略处理提交的新任务,默认有4种策略,文章后面会提到

调用线程池的execute方法处理任务,执行execute方法的过程:

  1. 判断线程池中运行的线程数是否小于corepoolsize,是:则创建新的线程来处理任务,否:执行下一步

  2. 试图将任务添加到workQueue指定的队列中,如果无法添加到队列,进入下一步

  3. 判断线程池中运行的线程数是否小于maximumPoolSize,是:则新增线程处理当前传入的任务,否:将任务传递给handler对象rejectedExecution方法处理

线程池的使用步骤:

  1. 调用构造方法创建线程池

  2. 调用线程池的方法处理任务

  3. 关闭线程池

4、线程池使用的简单示例

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

/**
 * 跟着阿里p7学并发,微信公众号:javacode2018
 */
public class FirstDemo {
    static ThreadPoolExecutor executor = new ThreadPoolExecutor(3,
            5,
            10,
            TimeUnit.SECONDS,
            new ArrayBlockingQueue<Runnable>(10),
            Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            int j = i;
            String taskName = "模拟任务" + j+"测试";
            executor.execute(() -> {
                //TimeUtil模拟任务
                try {
                    TimeUnit.SECONDS.sleep(j);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName() + taskName + "任务处理完毕");
            });
        }
        //关闭线程池
        executor.shutdown();
    }
}

输出:

pool-1-thread-1模拟任务0测试任务处理完毕
pool-1-thread-2模拟任务1测试任务处理完毕
pool-1-thread-3模拟任务2测试任务处理完毕
pool-1-thread-1模拟任务3测试任务处理完毕
pool-1-thread-2模拟任务4测试任务处理完毕
pool-1-thread-3模拟任务5测试任务处理完毕
pool-1-thread-1模拟任务6测试任务处理完毕
pool-1-thread-2模拟任务7测试任务处理完毕
pool-1-thread-3模拟任务8测试任务处理完毕
pool-1-thread-1模拟任务9测试任务处理完毕

5、线程池中常见的五种工作队列

任务太多的时候,工作队列用于暂时缓存待处理的任务,jdk中常见的5种阻塞队列:

ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按照先进先出原则对元素进行排序

LinkedBlockingQueue:是一个基于链表结构的阻塞队列,此队列按照先进先出排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool使用了这个队列。

SynchronousQueue :一个不存储元素的阻塞队列,每个插入操作必须等到另外一个线程调用移除操作,否则插入操作一直处理阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用这个队列

PriorityBlockingQueue:优先级队列,进入队列的元素按照优先级会进行排序

前2种队列相关示例就不说了,主要说一下后面2种队列的使用示例。

(1)SynchronousQueue队列的线程池代码示例:

import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

public class SecondDemo {
    public static void main(String[] args){
        ExecutorService service = Executors.newCachedThreadPool();
        for(int i=0;i<10;i++){
            int j = i;
            String taskName = "task任务"+j;
            service.execute(()->{
                System.out.println(Thread.currentThread().getName()+"处理"+taskName);
                try{
                    TimeUnit.SECONDS.sleep(1);
                }catch (InterruptedException e){
                    e.printStackTrace();
                }
            });
        }
        service.shutdown();
    }
}

输出

pool-1-thread-1处理task任务0
pool-1-thread-5处理task任务4
pool-1-thread-2处理task任务1
pool-1-thread-4处理task任务3
pool-1-thread-3处理task任务2
pool-1-thread-7处理task任务6
pool-1-thread-6处理task任务5
pool-1-thread-8处理task任务7
pool-1-thread-9处理task任务8
pool-1-thread-10处理task任务9

代码中使用Executors.newCachedThreadPool()创建线程池,看一下的源码:

public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

从输出中可以看出,系统创建了10个线程处理任务,代码中使用了SynchronousQueue同步队列,这种队列比较特殊,放入元素必须要有另外一个线程去获取这个元素,否则放入元素会失败或者一直阻塞在那里直到有线程取走,示例中任务处理休眠了指定的时间,导致已创建的工作线程都忙于处理任务,所以新来任务之后,将任务丢入同步队列会失败,丢入队列失败之后,会尝试新建线程处理任务。使用上面的方式创建线程池需要注意,如果需要处理的任务比较耗时,会导致新来的任务都会创建新的线程进行处理,可能会导致创建非常多的线程,最终耗尽系统资源,触发OOM。

(2)PriorityBlockingQueue优先级队列的线程池:

import java.util.concurrent.*;


public class Demo3 {

    static class Task implements Runnable, Comparable<Task> {

        private int i;
        private String name;

        public Task(int i, String name) {
            this.i = i;
            this.name = name;
        }

        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + "处理" + this.name);
        }

        @Override
        public int compareTo(Task o) {
            return Integer.compare(o.i, this.i);
        }
    }

    public static void main(String[] args) {
        ExecutorService executor = new ThreadPoolExecutor(1, 1,
                60L, TimeUnit.SECONDS,
                new PriorityBlockingQueue());
        for (int i = 0; i < 10; i++) {
            String taskName = "任务" + i;
            executor.execute(new Task(i, taskName));
        }
        for (int i = 100; i >= 90; i--) {
            String taskName = "任务" + i;
            executor.execute(new Task(i, taskName));
        }
        executor.shutdown();
    }
}

输出:

pool-1-thread-1处理任务0
pool-1-thread-1处理任务100
pool-1-thread-1处理任务99
pool-1-thread-1处理任务98
pool-1-thread-1处理任务97
pool-1-thread-1处理任务96
pool-1-thread-1处理任务95
pool-1-thread-1处理任务94
pool-1-thread-1处理任务93
pool-1-thread-1处理任务92
pool-1-thread-1处理任务91
pool-1-thread-1处理任务90
pool-1-thread-1处理任务9
pool-1-thread-1处理任务8
pool-1-thread-1处理任务7
pool-1-thread-1处理任务6
pool-1-thread-1处理任务5
pool-1-thread-1处理任务4
pool-1-thread-1处理任务3
pool-1-thread-1处理任务2
pool-1-thread-1处理任务1

输出中,除了第一个任务,其他任务按照优先级高低按顺序处理。原因在于:创建线程池的时候使用了优先级队列,进入队列中的任务会进行排序,任务的先后顺序由Task中的i变量决定。向PriorityBlockingQueue加入元素的时候,内部会调用代码中Task的compareTo方法决定元素的先后顺序。

(3)自定义创建线程的工厂:

给线程池中线程起一个有意义的名字,在系统出现问题的时候,通过线程堆栈信息可以更容易发现系统中问题所在。自定义创建工厂需要实现java.util.concurrent.ThreadFactory接口中的Thread newThread(Runnable r)方法,参数为传入的任务,需要返回一个工作线程。

示例代码:

import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;


public class Demo4 {
    static AtomicInteger threadNum = new AtomicInteger(1);

    public static void main(String[] args) {
        ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 5,
                60L, TimeUnit.SECONDS,
                new ArrayBlockingQueue<Runnable>(10), r -> {
            Thread thread = new Thread(r);
            thread.setName("自定义线程-" + threadNum.getAndIncrement());
            return thread;
        });
        for (int i = 0; i < 5; i++) {
            String taskName = "任务-" + i;
            executor.execute(() -> {
                System.out.println(Thread.currentThread().getName() + "处理" + taskName);
            });
        }
        executor.shutdown();
    }
}

输出:

自定义线程-1处理任务-0
自定义线程-3处理任务-2
自定义线程-2处理任务-1
自定义线程-4处理任务-3
自定义线程-5处理任务-4

6、四种常见的饱和策略

当线程池中队列已满,并且线程池已达到最大线程数,线程池会将任务传递给饱和策略进行处理。这些策略都实现了RejectedExecutionHandler接口。接口中有个方法:

void rejectedExecution(Runnable r, ThreadPoolExecutor executor)

参数说明:

r:需要执行的任务

executor:当前线程池对象

JDK中提供了4种常见的饱和策略:

AbortPolicy:直接抛出异常

CallerRunsPolicy:在当前调用者的线程中运行任务,即随丢来的任务,由他自己去处理

DiscardOldestPolicy:丢弃队列中最老的一个任务,即丢弃队列头部的一个任务,然后执行当前传入的任务

DiscardPolicy:不处理,直接丢弃掉,方法内部为空

7、自定义饱和策略

需要实现RejectedExecutionHandler接口。任务无法处理的时候,我们想记录一下日志,我们需要自定义一个饱和策略,示例代码:

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;


public class Demo5 {
    static class Task implements Runnable {
        String name;

        public Task(String name) {
            this.name = name;
        }

        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + "处理" + this.name);
            try {
                TimeUnit.SECONDS.sleep(5);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        @Override
        public String toString() {
            return "Task{" +
                    "name='" + name + '\'' +
                    '}';
        }
    }

    public static void main(String[] args) {
        ThreadPoolExecutor executor = new ThreadPoolExecutor(1,
                1,
                60L,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<Runnable>(1),
                Executors.defaultThreadFactory(),
                (r, executors) -> {
                    //自定义饱和策略
                    //记录一下无法处理的任务
                    System.out.println("无法处理的任务:" + r.toString());
                });
        for (int i = 0; i < 5; i++) {
            executor.execute(new Task("任务-" + i));
        }
        executor.shutdown();
    }
}

输出:

无法处理的任务:Task{name='任务-2'}
无法处理的任务:Task{name='任务-3'}
pool-1-thread-1处理任务-0
无法处理的任务:Task{name='任务-4'}
pool-1-thread-1处理任务-1

输出结果中可以看到有3个任务进入了饱和策略中,记录了任务的日志,对于无法处理多任务,我们最好能够记录一下,让开发人员能够知道。任务进入了饱和策略,说明线程池的配置可能不是太合理,或者机器的性能有限,需要做一些优化调整。

8、线程池中两种关闭方法

线程池提供了2个关闭方法:shutdownshutdownNow,当调用者两个方法之后,线程池会遍历内部的工作线程,然后调用每个工作线程的interrrupt方法给线程发送中断信号,内部如果无法响应中断信号的可能永远无法终止,所以如果内部有无线循环的,最好在循环内部检测一下线程的中断信号,合理的退出。调用者两个方法中任意一个,线程池的isShutdown方法就会返回true,当所有的任务线程都关闭之后,才表示线程池关闭成功,这时调用isTerminaed方法会返回true。

调用shutdown方法之后,线程池将不再接口新任务,内部会将所有已提交的任务处理完毕,处理完毕之后,工作线程自动退出。

而调用shutdownNow方法后,线程池会将还未处理的(在队里等待处理的任务)任务移除,将正在处理中的处理完毕之后,工作线程自动退出。

至于调用哪个方法来关闭线程,应该由提交到线程池的任务特性决定,多数情况下调用shutdown方法来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow方法。

9、扩展线程池

虽然jdk提供了ThreadPoolExecutor这个高性能线程池,但是如果我们自己想在这个线程池上面做一些扩展,比如,监控每个任务执行的开始时间,结束时间,或者一些其他自定义的功能,我们应该怎么办?

这个jdk已经帮我们想到了,ThreadPoolExecutor内部提供了几个方法beforeExecuteafterExecuteterminated,可以由开发人员自己去这些方法。

beforeExecute:任务执行之前调用的方法,有2个参数,第1个参数是执行任务的线程,第2个参数是任务

protected void beforeExecute(Thread t, Runnable r) { }

afterExecute:任务执行完成之后调用的方法,2个参数,第1个参数表示任务,第2个参数表示任务执行时的异常信息,如果无异常,第二个参数为null

protected void afterExecute(Runnable r, Throwable t) { }

terminated:线程池最终关闭之后调用的方法。所有的工作线程都退出了,最终线程池会退出,退出时调用该方法

示例代码:

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class Demo6 {
    static class Task implements Runnable {
        String name;

        public Task(String name) {
            this.name = name;
        }

        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + "处理" + this.name);
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        @Override
        public String toString() {
            return "Task{" +
                    "name='" + name + '\'' +
                    '}';
        }
    }

    public static void main(String[] args) throws InterruptedException {
        ThreadPoolExecutor executor = new ThreadPoolExecutor(10,
                10,
                60L,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<Runnable>(1),
                Executors.defaultThreadFactory(),
                (r, executors) -> {
                    //自定义饱和策略
                    //记录一下无法处理的任务
                    System.out.println("无法处理的任务:" + r.toString());
                }) {
            @Override
            protected void beforeExecute(Thread t, Runnable r) {
                System.out.println(System.currentTimeMillis() + "," + t.getName() + ",开始执行任务:" + r.toString());
            }

            @Override
            protected void afterExecute(Runnable r, Throwable t) {
                System.out.println(System.currentTimeMillis() + "," + Thread.currentThread().getName() + ",任务:" + r.toString() + ",执行完毕!");
            }

            @Override
            protected void terminated() {
                System.out.println(System.currentTimeMillis() + "," + Thread.currentThread().getName() + ",关闭线程池!");
            }
        };
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task("任务-" + i));
        }
        TimeUnit.SECONDS.sleep(1);
        executor.shutdown();
    }
}

输出:

1564324574847,pool-1-thread-1,开始执行任务:Task{name='任务-0'}
1564324574850,pool-1-thread-3,开始执行任务:Task{name='任务-2'}
pool-1-thread-3处理任务-2
1564324574849,pool-1-thread-2,开始执行任务:Task{name='任务-1'}
pool-1-thread-2处理任务-1
1564324574848,pool-1-thread-5,开始执行任务:Task{name='任务-4'}
pool-1-thread-5处理任务-4
1564324574848,pool-1-thread-4,开始执行任务:Task{name='任务-3'}
pool-1-thread-4处理任务-3
1564324574850,pool-1-thread-7,开始执行任务:Task{name='任务-6'}
pool-1-thread-7处理任务-6
1564324574850,pool-1-thread-6,开始执行任务:Task{name='任务-5'}
1564324574851,pool-1-thread-8,开始执行任务:Task{name='任务-7'}
pool-1-thread-8处理任务-7
pool-1-thread-1处理任务-0
pool-1-thread-6处理任务-5
1564324574851,pool-1-thread-10,开始执行任务:Task{name='任务-9'}
pool-1-thread-10处理任务-9
1564324574852,pool-1-thread-9,开始执行任务:Task{name='任务-8'}
pool-1-thread-9处理任务-8
1564324576851,pool-1-thread-2,任务:Task{name='任务-1'},执行完毕!
1564324576851,pool-1-thread-3,任务:Task{name='任务-2'},执行完毕!
1564324576852,pool-1-thread-1,任务:Task{name='任务-0'},执行完毕!
1564324576852,pool-1-thread-4,任务:Task{name='任务-3'},执行完毕!
1564324576852,pool-1-thread-8,任务:Task{name='任务-7'},执行完毕!
1564324576852,pool-1-thread-7,任务:Task{name='任务-6'},执行完毕!
1564324576852,pool-1-thread-5,任务:Task{name='任务-4'},执行完毕!
1564324576853,pool-1-thread-6,任务:Task{name='任务-5'},执行完毕!
1564324576853,pool-1-thread-10,任务:Task{name='任务-9'},执行完毕!
1564324576853,pool-1-thread-9,任务:Task{name='任务-8'},执行完毕!
1564324576853,pool-1-thread-9,关闭线程池!

从输出结果中可以看到,每个需要执行的任务打印了3行日志,执行前由线程池的beforeExecute打印,执行时会调用任务的run方法,任务执行完毕之后,会调用线程池的afterExecute方法,从每个任务的首尾2条日志中可以看到每个任务耗时2秒左右。线程池最终关闭之后调用了terminated方法。

10、合理地配置线程池

要想合理的配置线程池,需要先分析任务的特性,可以冲一下几个角度分析:

  • 任务的性质:CPU密集型任务、IO密集型任务和混合型任务

  • 任务的优先级:高、中、低

  • 任务的执行时间:长、中、短

  • 任务的依赖性:是否依赖其他的系统资源,如数据库连接。

性质不同任务可以用不同规模的线程池分开处理。CPU密集型任务应该尽可能小的线程,如配置cpu数量+1个线程的线程池。由于IO密集型任务并不是一直在执行任务,不能让cpu闲着,则应配置尽可能多的线程,如:cup数量*2。混合型的任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这2个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。可以通过Runtime.getRuntime().availableProcessors()方法获取cpu数量。优先级不同任务可以对线程池采用优先级队列来处理,让优先级高的先执行。

使用队列的时候建议使用有界队列,有界队列增加了系统的稳定性,如果采用无界队列,任务太多的时候可能导致系统OOM,直接让系统宕机。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值