- 博客(30)
- 收藏
- 关注
原创 关于Few-Shot Learning & Meta-Learning 的一些 Q&A
什么是Few-shot Learning和Meta-learning?| Few-shot Learning和Meta-learning谁的范围更广?| Few-shot Learning和Meta-learning的共同点与异同点?| Few shot learning可以不用meta-training阶段吗?| 什么是Transductive Few-Shot Learning?它和普通的 Few-Shot Learning有什么区别?
2023-04-24 13:02:25 407 1
原创 TypeError: can‘t convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to
解决报错:TypeError: can’t convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
2023-04-20 22:31:57 317
原创 浅谈 few-shot learning和meta-learning的区别
浅谈 few-shot learning和meta-learning的区别
2023-03-08 10:27:39 357
原创 optimizer.step() 和 scheduler.step() 的区别
optimizer.step() 和 scheduler.step() 的区别
2022-05-26 22:59:44 809
原创 代码学习笔记 | rdkit| psi4 | GNN | df | 命令随手记 | 持续更新.......
rdkit| psi4 命令随手记 | 持续更新......
2022-05-25 11:28:21 575
原创 size mismatch for layer1.0.weight: copying a param with shape torch.Size([100, 300]) from checkpoint
size mismatch for layer1.0.weight: copying a param with shape torch.Size([100, 300]) from checkpoint, the shape in current model is torch.Size([100, 428]).
2022-04-25 09:54:30 4144
原创 Could not load dynamic library ‘libcudart.so.11.0‘; dlerror: libcudart.so.11.0: cannot open share
Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /apps/software/anaconda3/lib
2022-04-22 09:31:07 6973
原创 MG-BERT | 利用 无监督 原子表示学习 预测分子性质 | 在分子图上应用BERT | GNN | 无监督学习(掩蔽原子预训练) | attention
本文将分子图数据融合到BERT中,用来解决分子性质预测中的数据稀缺问题。MG-BERT通过掩蔽原子恢复任务利用大量未标记的分子数据挖掘分子图中的上下文信息,以实现有效的原子和分子表示学习,其亮点如下: ①提出了一种有效的自监督学习策略——masked atoms prediction,用于在大量未标记数据上预训练MG-BERT模型,以挖掘分子中的上下文信息。得到的原子表示不仅包含原子类型信息,也包含其邻居信息; ②注意力机制可以测量原子或子结构与目标属性之间的相关性。
2022-01-19 11:45:06 2176 1
原创 该设备或资源(Web代理)未设置为接受端口“7890”上的连接 | 可以登微信QQ但是网页进不去
该设备或资源(Web代理)未设置为接受端口“7890”上的连接,可以登微信QQ但是网页进不去
2022-01-16 10:40:47 12379 14
原创 Molecule Property Prediction based on Spatial Graph Embedding | 基于空间图嵌入的分子性质预测 | Graph | GNN
本文使用图结构来表示分子数据,将其输入CNN以发现每个原子之间的关系。其亮点如下: ①设计了一个 卷积空间图嵌入层(C-SGEL),使用一维卷积来处理分子中每个原子的空间图矩阵;然后,堆叠多个 卷积空间图嵌入层(C-SGEL)以构建卷积空间图嵌入网络(C-SGEN)。 ②结合了分子指纹进行预测。
2022-01-05 15:27:52 1446 1
原创 KEMPNN | 知识嵌入消息传递神经网络:利用人类知识改进分子性质预测 | MPNN的改进 | GNN | knowledge attention | 非定量学习
本文是MPNN的改进,使用知识标注数据和属性数据一起训练MPNN。亮点如下:①在知识预测阶段还加入了注意力机制,分配不同的权重;②使用 非定量知识数据 来增强深度学习模型,与使用 任务相关的 定量数据的迁移学习相比,构建成本更低;③提出了一种知识数据的生成方法。
2021-12-30 21:59:48 1269
原创 Strategies for Pre-training Graph Neural Networks | PreGNN | GNN预训练策略 | Meta-MGNN初始参数获取
GNN的预训练策略PreGNN,可以同时获取图级和节点级的信息。
2021-12-09 22:10:23 954
原创 DeepGS:Deep Representation Learning of Graphs and Sequences for DTA | CNN,GAT,BiGRU,Prot2Vec
DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction(DTA)这是一篇预测药物和靶标结合亲和力的文章,发表在ECAI2020上。文章最大的创新点在于首次提出三通道,在此之前都是使用二通道预测。ECAI 2020:European Conference on Artificial Intelligence 欧洲人工智能会议一、Introduct
2021-10-25 11:19:38 2443 2
原创 Generative AI Models for Drug Discovery:有关药物分子生成的深度学习模型(综述类文章)| RNN, VAE, GAN, 强化学习RL
1 Introduction(1)背景 新药的研发既需要较长的时间,也需要较高的成本。于研究人员来说,在合理的时间内 从大量可合成化合物中 找到最有希望的 候选化合物 仍然是一个挑战。因此可以借助AI分子生成模型。(2)目的作者回顾了一些AI分子生成模型,并讨论每种模型的优缺点。同时,作者描述了如何将强化学习(RL)算法应用于生成式人工智能,以便在 更好地利用分布式硬件 的同时 获得更真实的效果。2 分子生成的简单模型:RNN(1)工作流图为RNN分子生成模型的工作流:①将分子转化为SM
2021-10-23 10:44:14 3104 5
原创 Guidelines for RNN Transfer Learning Based Molecular Generation of Focussed Libraries:RNN,分子生成,迁移学习
最近读了一篇在2020.7在Journal of Chemical Information and Modeling(JCIM)发表的文章,这个杂志是化学2区的,3年平均影响因子为4.107。想分享一下我对这篇文章的理解,如果有不准确的地方,欢迎批评指正。1 背景(1)背景 在药物设计中,我们需要的是具有特定功能的小分子,但特定功能分子的数据库较小,因此常使用迁移学习:首先在较大的数据集上进行学习,确保生成分子的有效性,然后再迁移到较小的特定功能的数据集上进行学习,使其具有特定功能。(2)目的基.
2021-10-22 12:03:37 700 2
原创 Molecular Sets(MOSES): A Benchmarking Platform for Molecular Generation Models,AI制药领域,分子生成必读文章
Molecular Sets,MOSES : A Benchmarking Platform for Molecular Generation Models1 研究背景2 分子表示方法2.1 字符表示2.2 分子图表示3 评判标准3.1 valid&unique3.2 Novelty3.3 Filters3.4 Fragment similarity(Frag)3.5 Scaffold similarity(Scaff)3.6 Similarity to a nearest neighbor(SNN
2021-10-22 11:19:51 1195
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人