Strategies for Pre-training Graph Neural Networks | PreGNN | GNN预训练策略 | Meta-MGNN初始参数获取

本文介绍了ICLR会议上关于预训练图神经网络的文章,提出PreGNN策略,结合节点级和图级预训练以增强模型泛化能力,避免负迁移。通过节点预测和图级属性预测任务,实现在化学和生物领域的应用,提升了模型在分子性质预测和蛋白质功能预测等任务上的性能。
摘要由CSDN通过智能技术生成

今天给大家介绍ICLR会议上的一篇文章,“STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS”。文章提出了一种图神经网络的预训练策略PreGNN,同时在图级和节点级进行预训练,在提高模型泛化能力的同时避免了负迁移的产生。这篇文章被Meta-MGNN引用了,用来获取初始化参数。
在这里插入图片描述
代码链接:https://github.com/snap-stanford/pretrain-gnns/

1. Introduction

在机器学习领域,对于特定任务标签少的问题,解决办法通常是在数据丰富的相关任务上对模型进行预训练,然后在特定任务上进行微调。这种预训练方法在NLP和CV领域非常有效,但如何在图形数据上使用预训练策略没有被解决。

仅仅在在节点水平或整个图的水平上预训练GNN改善有限,甚至可能导致负迁移,因此作者提出了一种预训练GNN的方法,核心思想是同时在节点水平和整个图的水平上预训练GNN,使GNN能够同时学习到有用的局部和全局表示。

图1 不同预训练策略下的节点嵌入与图嵌入

当仅使用节点级预训练时,不同形状的节点(语义上不同的节点)可以很好地分离,但是节点嵌入是不可组合的,因此通过池化节点级嵌入得到的图嵌入不是线性可分的,如图1(a.i)所示;当仅使用图级预训练时,图嵌入可以很好地分离,但是单个节点的嵌入不一定能够捕获其特定领域的语义,如图1(a.ii)所示;当同时使用节点级预训练和图级预训练时,不同类型的节点可以很好地分离,同时,嵌入空间也是可组合的,这允许对整个图进行精确的表示,并允许将预训练的模型转移到各种下游任务中。如图1(a.iii)所示。

2. 模型介绍

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值